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Abstract

The recent work on automata whose variables and parameters are real numbers

(e.g., Blum, Shub, and Smale, 1989; Koiran, 1993; Bournez and Cosnard, 1996;

Siegelmann, 1996; Moore, 1996) has focused largely on questions about compu-

tational complexity and tractability. It is also revealing to examine the metric

relations that such systems induce on automata via the natural metrics on their

parameter spaces. This brings the theory of computational classi�cation closer to

theories of learning and statistical modeling which depend on measuring distances

between models. With this in mind, I develop a generalized method of identi-

fying pushdown automata in one class of real-valued automata. I show how the

real-valued automata can be implemented in neural networks. I then explore the

metric organization of these automata in a basic example, showing how it 
eshes

out the skeletal structure of the Chomsky Hierarchy and indicates new approaches

to problems in language learning and language typology.

0. Introduction

Smolensky (1990) argues that connectionist (or \neural") networks o�er an opportunity
to overcome the brittleness of symbolic devices without foregoing their powerful com-
putational capabilities. \Brittleness" refers to the fact that many symbolic devices are
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catastrophically sensitive to small distortions in their encoding|a bit or a semicolon out
of place can bring an entire system to its knees. Such sensitivity is reminisicent of the
trademark behavior of \chaotic" dynamical processes: small di�erences in initial condi-
tions give rise to substantial di�erences in long-term behavior. It would be ironic, then,
if the interpretation of neural devices as dynamical systems with potentially chaotic
behaviors led to a realization of Smolensky's ideal. Intriguingly, this is the character of
the result that I report on here. Fractal objects, which turn up as the traces of chaotic
processes, turn out to be especially useful for instantiating powerful computing devices
in systems of neurons which exhibit graceful modi�cation under small distortions (cf.
Pollack, 1991). It is as though by embracing the caprice of a chaotic process, a compu-
tational system can stay in its good graces and make e�ective use of its complexity (cf.
Crutch�eld and Young, 1990; Crutch�eld, 1994).

0.1 The Chomsky Hierarchy

I work here with the now-standard notion of what it means for a system to be computa-
tionally powerful or complex. The Chomsky Hierarchy is an ordering of formal languages
into increasingly more-inclusive classes. A formal language, L, is taken to be a set of
strings of symbols. A computer which can be made to output any string of symbols in L
but no string of symbols in the complement of L is called a generator for L. A computer
which can determine, for any input string, whether or not it is a member of L is called
a recognizer for L.

The lowest level on the Chomsky Hierarchy is the set of �nite state languages,
so-called because computers which generate (or recognize) them need only be in a �nite
number of distinct states. (We can think of two states of a computation as being distinct
if they give rise to di�erent expectations about what will happen in the future|see
Crutch�eld, 1994.) Next up on the hierarchy are context-free languages, which can be
generated by the branching tree-structures that linguists often employ in descriptions
of natural languages. Each context-free language can be recognized by a device called a
pushdown automaton, which consists of a �nite-state controller coupled with a stack, or
record of important features of the computation that have already taken place (Hopcroft
and Ullman, 1979). The stack is a string of symbols, only the �rst of which is accessible
to the controller. The controller is allowed to remove this symbol (a pop move), leave the
stack unchanged, or add additional symbols to the stack (push moves). Since the stack
is allowed to be of arbitrary length, a pushdown automaton can be in arbitarily many
distinct states. Therefore, there is a big distinction between the �nite-state and context-
free classes in that the latter but not the former include in�nite state languages. Non-
�nite-state context-free languages are distinguished from �nite state languages by the
possession of strings which, when generated by branching tree-structures, require center-
embedded descriptions of arbitary depth. A center-embedded description is a branching
tree-structure in which a branching node dominates nodes to the left and right of a node
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dominating another branching tree structure.

Above the context-free languages on the Chomsky Hierarchy are context-sensitive
languages. These can be recognized by linear bounded automata. A linear bounded
automaton has, in place of a stack, a tape with a �nite number of slots in which the
�nite controller can write symbols or erase them; the number of slots is a linear function
of the length of the input string; the controller can move forward and backward on the
tape, one slot at a time. Linguists generally agree that the branching tree-structures
associated with context-free languages are very useful for describing large portions of
most natural languages, but it is also well-known that a few natural languages (e.g.
Dutch) require a more powerful computer than a context-free grammar|in most such
cases, linear bounded automata are su�cient (e.g., Shieber, 1985). The most-inclusive
class in the Chomsky hierarchy is that of the recursively enumerable languages. These
can be recognized by Turing machines, which di�er from linear bounded automata in
that the tape has a countable in�nity of slots.

There are also many languages that cannot even be recognized by Turing Machines.
Such languages are called unrestricted languages (e.g., Siegelmann, 1996).

0.2 Dynamical Automata

In this paper, I discuss a class of devices called \Dynamical Automata" which, in their
most general form, can be con�gured as recognizers (or generators) of unrestricted lan-
guages. I focus here, however, on a type of parameterization under which they emulate
context free grammars.

The term \Dynamical Automaton" is intentionally like the term \Dynamical Rec-
ognizer" which has been used in closely related contexts. The dynamical automata I de-
scribe here are similar to but not quite the same as the \dynamical recognizers" that Pol-
lack (1991), Blair and Pollack (to appear), and Moore (to appear) examine. All of these
dynamical computing devices have in common that they perform their computations in
a real-valued space and involve iterative computations (a function is repeatedly applied
to its own output). Pollack takes the tack of training his machines on reasonable-looking
tasks and analyzing their behavior in order to get clues to the kinds of computation they
are performing. Blair and Pollack combine this approach with the kind of bottom up
computational analysis developed by Crutch�eld and Young (1990), in which one tries
to �t various �nite-state devices to an unknown machine in order to detect in�nite-
state computation. Moore examines his dynamical recognizers from the standpoint of
their computing power and produces an elaboration of the Chomsky hierarchy involving
many new language classes. Moore 1996 demonstrates context free generative capacity
for one class of his Dynamical Recognizers by a method that is similar to the method
which I describe in Section 2 below. The work I describe here complements both the
complexity-detection approach and the complexity-classsi�cation approach. Although I
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do not study learning mechanisms, I show explicitly how to parameterize in�nite-state
dynamical automata so that they emulate particular context-free grammars. Moreover,
I show how the dynamical automaton framework (and, implicitly, the dynamical recog-
nizer framework) allows us to situate formal languages in metric spaces (spaces in which
distances can be measured between points). Such language-spaces look especially useful
for addressing the 
exibility problem noted above.

0.3 Neural networks

The robustly 
exible connectionist devices (neural networks) to which Smolensky 1990
refers are, in fact, a rather varied collection of formal models. In this section, I describe
those features of them which I make use of here. They have in common that their inven-
tion was inspired by research in neurobiology. They typically involve �nite collections of
similar computing units which receive and send information to each other along chan-
nels called connections. The connections are associated with scalars called weights. The
units have activation values, ai which are computed as function, f , of a weighted sum
of the activations on units they are connected to, where the weight associated with the
activation of unit ai by unit aj is the weight, wij on the connection running from unit j
to unit i (Equation (1)).

ai = f(
NX
j=1

ajwij) (1)

The activation function, f , is typically a threshold function like

f(x) =

(
1

0

x > �

x � �

)
; � 2 R (2)

or one of its continuous analogs, for example, the sigmoid,

f(x) =
1

1 + e�x
(3)

Sometimes the activation function is linear (f(x) = kx for k 2 R). Usually, when people
talk about a linear activation function they mean the case k = 1.

Networks with second-order connections are sometimes studied as well. In this
case, the activation of one unit, k serves to specify the weight, wijk on a connection
between two other units (j to i). In the work described here, I make use of restricted
form of second-order connection: gating. If a gating unit is su�ciently activated, it
allows (or alternatively, blocks) transmission of activation along a connection between
two other units.
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An early cause for pessimism about the usefulness of neural computing units with
threshold activation functions was the observation (Minsky and Papert, 1988[1969])
that they could only compute linearly separable boolean functions. A linearly separable
boolean function on a real valued vector space, Rn, has value 1 for all points on one side
of some subspace of dimension n� 1 and 0 for all points on the other side (i.e., a linear
subspace separates the 1s from the 0's) . Examples of linear separable functions on bit
vectors are the operations AND, OR, and NOT .

The early pessimism about using threshold units in computers was replaced by
optimism in the 1980s on account of the realization that there are e�ective learning
algorithms for functions computed across multiple layers of semi-linear units (e.g. the
backpropagation algorithm|Werbos 1974; Rumelhart et al., 1986). This made it possible
to automate to some extent the problem of decomposing a function into a succession of
linearly separable mappings from one layer to the next.

More recently, the optimism has been tempered again, by the realization that our
understanding of the mechanisms of neural network learning is very low-level. Essen-
tially, it consists of some elaborations on the method of gradient descent learning, in
which a poor solution to a problem is turned into a good one by making incremental
improvements in response to di�erent constraints on the task. This method can go a
long way, but it tends to falter in complex domains (including the more complex gram-
mar classes discussed above). In order to handle these domains, it appears that we need
to have some additional insight into how neural devices are capable of solving complex
problems.

This realization, in combination with the fact that incremental learning devices
tend to be especially sensitive to the statistics of their environment has led many re-
searchers to turn to statistical learning theory (e.g., Vapnik, 1995). One result has been
that for problems in which one knows that the data have been drawn from a particular
class of statistical distributions, it is possible to design the network and learning proce-
dure in such a way that the activations of the outputs are guaranteed to converge on
the probabilities of the outputs given the inputs (e.g., Rumelhart, et al., 1995; Bishop,
1995).

Helpful as the realizations have been, they have only slightly improved our un-
derstanding of how neural mechanisms might handle complex tasks, in part because
our understanding of the high-order statistical models needed for such domains is still
quite limited. This might be a cause, after so many ups and downs, for terminal pes-
simism, but there has been surprisingly little attention paid directly to the problem of
representation. If we can achieve a better understanding of how complex neural devices
might represent solutions to complex tasks, it may well make it easier to design learning
devices that can discover these solutions. Therefore, in this paper, I do not address
the problem of learning at all, but focus on a representation problem that has been a
persistent challenge: representing arbitrary constituent structures with a context free
grammar.
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The idea is to design a device that represents such grammars in a way that builds
on the strengths of neural computing. For example, it will not do, as Pollack (1987)
notes, to implement context free grammars by using a distinct unit for every symbol
on the stack (a localist representation of the stack). This would require the number of
units to grow without bound, and would draw on none of the analogizing capabilities
of distributed representations. Nor will it be particularly helpful to design a neural
recognizer that models precisely the class of context-free grammars, no more, no less.
Such a faithful implementation would have all the weaknesses of the symbolic prototype.
A neural context free grammar is not of much interest unless it tells us something new
about the nature of computation.

0.4 Previous work

In fact, the problem of �nding a neurally reasonable representation for constituent
structures and/or context-free grammars has been taken up many times. Several prior
projects contain helpful ideas which I make use of here. Most of the proposals lack
appeal not because the models don't have interesting new properties, but because they
are not explored thoroughly enough to reveal these properties.

One strand of research focuses directly on using neural networks to recognize or
generate complex languages. Another strand is more representationally oriented in that
it focuses on the encoding of constituent structures in neural devices. I'll review the
language recognizers �rst.

0.4.1 Language recognition with neural networks

Pollack (1987) suggests the essence of the proposal I make here in his \Neuring Machine",
a connectionist version of the Turing Machine. The device uses two units with in�nite
precision to keep track of the two ends of the Turing Machine's in�nite tape. The digits
of the real-valued activations of these units correspond to successive symbols on the
tape. Thus the model uses geometric scaling (multiplication by a constant contraction
factor) to pack an unbounded amount of information into a bounded activation value. I
describe a similar machine in more detail in Section 1.1.

For the multiplication operations, Pollack uses gating units, which, as I noted
above are a variety of second-order unit. Siegelmann and Sontag (1991) redo Pollack's
feat using only �rst-order connections. However, neither they nor Pollack show how a
Turing machine embedded in connectionist machinery does anything di�erent from its
symbolic counterpart.

Sun et al. (1990a, b) propose a neural network pushdown automaton with a
stack that is \external" in the sense that it uses distinct memory blocks in a symbolic
machine to store the contents of the stack. The interesting thing about this model is
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that it represents the stack contents as a real-valued vector, which allows it to learn
stack representations from data by gradient descent. The results are promising in that
the network successfully learned to recognize the language of balanced parentheses and
a few similarly simple languages. The authors are able to analyze each trained network
and map its states to those in an isomorphic symbolic machine. However, they do not
report on the learning of more complex languages. Nor do they explore the general
computational properties of their mechanism, and hence do not reveal much about how
it di�ers from its symbolic counterparts.

Kremer (1996) analyzes a number of types of neural networks with respect to their
computational power, referring, again, to the Chomsky Hierarchy, thus helpfully relating
neural architectures to known symbolic devices in a very systematic and comprehensive
way. The proofs of formal equivalence, however, rely on hooking together pieces of
connectionist machinery to simulate pieces of symbolic devices, and thus fail to reveal
useful di�erences.

0.4.2 Constituent structure representation with neural networks

Several projects have been concerned with studying constituent structures in connec-
tionist devices.

Pollack (1990) describes RAAMs (Recursive Auto-AssociativeMemories), a method
of representing binary branching trees in a �xed-width vector of activations. The central
device is a three-layer auto-associator which maps two separate vector representations
for sequences of constituents to themselves via a hidden layer of half their combined
length. This compression mechanism can be used iteratively to compile a �xed width
representation for an entire tree. Moreover, the hidden-to-output mapping in the de-
vice can be used to recursively expand a tree representation back into its constituent
symbols. Pollack notes that RAAMs can be thought of as recognizing the languages of
strings which they successfully compress and uncompress. He �nds them recognizing
certain �nite languages and showing signs of generalizing to constituent combinations
that are not in the training set but their generalization ability is quite weak. Despite
their weak generalization ability, RAAMs might turn out to provide some useful new
insights if the principles by which they compress representations could be elucidated.
However, no analysis of these principles has yet been provided.

Smolensky, in various writings (Smolensky 1988; Smolensky 1990; Smolensky et
al. 1992; Prince and Smolensky 1993), has eloquently articulated the motivations for
studying the relationship between symbolic and subsymbolic (connectionist) devices. In
Smolensky (1990) and Smolensky et al. (1992), he and his colleagues propose tensors
(or tensor products) as a formal model of this relationship. The tensor product of two
vectors, ~u and ~v is the matrix T de�ned by Tij = uivj where xi is the ith entry of vector
~x. Smolensky shows how tensor products can be used to address the variable binding
problem for neural networks: how can multiple assignments of values to variables be
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stored in a �xed-width vector? The idea is to interpret one vector in the tensor as a
variable and the other as a value. If certain conditions are met, then a number of such
variable-value tensors can be added together without loss of information. Smolensky
et al. describe a method of capitalizing on the variable-binding capabilities of tensor
products to encode tree structures: iterated tensors of variable-denoting vectors iden-
tify positions in a tree structure; these can be combined (again, by tensor product)
with value-denoting vectors to identify symbols at nodes; sums of such \phrasal" and
\terminal" node tensors encode entire trees. Smolensky et al. (1992) note that such
tree-descriptions can be used to encode context free grammars by de�ning a \harmony"
function on their constituent tensors in such a way that only those trees that are well-
formed with respect to a particular grammar have a total harmony in excess of some
�xed threshold value.

Smolensky (1990)'s analysis of the graceful degradation in performance of the basic
variable-binding tensors under the superimposition of many variable-value tensors is an
appealing con�rmation of the assertion that we can gain some advantages by seeking
connectionist solutions to symbolic problems. The grammar encoding mechanism, on the
other hand, is unhappily cumbersome because it requires the size of the storage vector to
grow exponentially with the depth of the tree. Also, the harmony-assignment method of
de�ning well-formed trees does not seem interestingly di�erent from a symbolic grammar.
For example, the framework of harmony-based grammar seems well-suited to modeling
subtle di�erences among the grammaticality judgments that people assign to natural
language sentences, but the mechanism proposed by Smolensky et al. (1992) only does
this in a long-known-to-be-inaccurate way: counting ill-formed nodes. On the other
hand, the use of iterated functions to keep track of recursive structures very useful.
Plate (1994; 1995), to be discussed, and I, in Section 2, both propose ways of using
iterated functions to encode tree structures with zero growth in the size of the storage
vector.

Plate (1994; 1995) introduces holographic reduced representations (HRRs) which
use circular convolution to solve the variable binding problem for vector-space computers.
Closely related to Smolensky's tensor product, the circular convolution, ~z of vectors, ~u
and ~v, all of length n, is given by

zi =
n�1X
i=0

vkui�k

where the subscripts are computed modulo n. Circular convolution can be thought of
as a way of adding together various groups of entries in a tensor product in a way that
keeps the dimension of the product equal to the dimension of its input vectors. As a
result, superposition memories using circular convolution saturate more quickly than
tensor products, and vectors of very high dimension (thousands of units) must be used
to encode relatively few patterns. Nevertheless, the method supports the compression
of tree structures into �xed-width vectors which are somewhat more analyzable than
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Pollack's RAAMs. Plate works with vectors of random bits, which are likely to be
nearly orthogonal to one another when their dimension is high, and provides an analysis
of the saturation properties, also showing appealingly graceful degradation. One analysis
shows that, in the processing of tree structures, one can interpret a partially completed
backgrounded constituent as noise added to the salient representation of the constituent
currently being processed. In this sense, HRRs also pick up on Pollack (1987)'s scaling
technique for backgrounding information, which I make use of too. Plate does not explore
the possibility of designing the representation vectors deterministically (rather than by
using a random variable). This approach might allow one to construct more capacious
HRR memories and gain more insight into their novel representational properties.

Elman (1991) studies a simple recurrent network (SRN) trained on the task of
predicting words generated by a natural-language-like context free grammar. Although
he does not analyze the computational power of the resulting machine, he provides
examples of loop-shaped state space trajectories corresponding to constituents. This is
a useful idea which I make use of below: since a constituent in a context free grammar can
be thought of as a process which makes a relatively minor adjustment in the processor's
state, it is natural to implement constituents in a metric space model using cycles or
near-cycles (i.e., loops or near-loops). Wiles and Elman (1995) and Rodriguez (1995)
study related networks which I discuss in more detail in Section 1.1.

Pollack (1991) de�nes a Dynamical Recognizer as a device,

M = (Z;�;
; G)

where Z � Rk is a vector space of states, � is a �nite input alphabet, �1; �2; : : : ; �n,

 is a set of transformations, !�i : R

k ! Rk corresonding to the symbols in �, and
G : Z ! f0; 1g is a \decision" function. The recognizer always starts in a particular
state, called zk(0). It processes a string of symbols �s1�s2�s3 : : : �sk one symbol at a
time, performing transformation !i when symbol �i is processed. If G is 1 when the
last symbol has been presented, the machine accepts the string, otherwise it rejects it.
Pollack shows how a particular, trainable neural network with recurrent connections can
be interpreted as a dynamical recognizer and he studies its behavior when it is trained
on small samples of sentences from �nite state languages that Tomita (1982) invented
for testing learning machines. He �nds that although it is trained on a �nite number
of strings, the network appears to be converging on an in�nite-state device (modulo the
limited precision of its implementation). Pollack argues that the limiting machine is an
in�nite state device by providing evidence that its distinct states form a fractal|that
is, a set in which similar structures occur at arbitarily small scales.

The dynamical automata I discuss below di�er from Pollack's dynamical recogniz-
ers only in that they permit the choice of function associated with a given symbol to
be nonunique and contingent upon the current position in the state space. Instead of
training dynamical devices and studying their behaviors, I design them explicitly to have
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particular behaviors. Although this leaves learning out of the picture and removes some
of the appealing mystery associated with simulative investigations, it provides insight
into the principles around which in�nite-state computations may be organized. Thus it
is a useful complement to Pollack's work.

0.5 Overview

There is a recurring theme in these research projects: iterative computations with func-
tions that scale their input allow one to encode in�nite state devices in a bounded,
�nite-dimensional representation space. In the remainder of the paper, I formalize this
idea and study its implications. The iterative scaling is associated with fractals, which I
use in the design of example dynamical automata in Section 1. In Section 2, I discuss a
subset of dynamical automata which correspond to the class of context free languages.
Section 3 shows how these dynamical context free grammars provide a new, more nat-
ural way of representing context-free grammars in neural devices. Section 4 shows how
the dynamical automata framework reveals important relationships between computa-
tional devices which are invisible from the symbolic perspective. Section 5 discusses the
usefulness of these �ndings.

1. Examples of dynamical automata.

In this section, I introduce fractals and dynamical automata informally. Section 2 pro-
vides a corresponding formal treatment.

A fractal is a set of points which is self-similar at arbitrarily small scales. The
classic example is the Cantor set. Consider the following in�nite series of sets. The �rst
set in the series is the interval [0, 1]. The next is the result of removing the middle third
of this interval, namely, the set [0, 1/3] [ [2/3, 1]. The next is the result of removing
the middle thirds of each of the contiguous intervals in the previous set. This process is
repeated inde�nitely. The set which is the limit of this process is called the Cantor Set.

The Cantor set is \self-similar at arbitrarily small scales" in the following sense.
We associate the points in the set with their coordinates on the real number line. The
function f(x) = 1

3nx + x0 maps the original set in a 1-1 fashion onto a segment of the
original set for various values of x0 and all n 2 N .1 Thus, the Cantor Set contains
arbitrarily small copies of itself.

It is worth noting that, under the de�nition just given, many other less exotic sets
are also fractals. For example, the line segment [0, 1] is a fractal; the real number line is
a fractal; the geometric series, f 1

rn
: n 2 Ng is a fractal. The bounded fractals are more

useful for forming realistic implementations, so I'll focus on them here.

1N denotes the non-negative integers: 0, 1, 2, 3, etc.
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Figure 1: The Sierpinski triangle.
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Fractals can also exist in multiple dimensions. The Sierpinski Triangle (Figure (1))
is a simple generalization of the Cantor set. One can think of the Sierpinski triangle as
the limit of the process of successively removing the \middle quarter" of a triangle to
produce three new triangles.

The next two subsections investigate some ways of using the recursive structure of
fractals to keep track of computational processes.

1.1 A simple case: parenthesis balancing

Pollack (1991) noted that a very simple arti�cial neural device could recognize the lan-
guage of balanced parentheses|the language in which left parentheses always precede
corresponding right parentheses.2 He describes a machine along the lines of that shown

2Moore (to appear) refers to this language as the Dyck Language.
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Figure 2: A neural network for parenthesis balancing.
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in Figure 2.

Initially, the activation of unit z is 1. If a left parenthesis is presented, the network
activates unit L which has the e�ect of allowing transmission of activation along the
connection labeled wL = 1=2. Similarly, if a right parenthesis is presented, the network
activates unit R which allows transmission of activation along the connection labeled
wR = 2. With each presentation of a symbol, z updates according to the rule z(t+1) =
f(
P

i wiai) = f(wL � z(t) +wR � z(t)) = either f(wL � z(t)) or f(wR � z(t)). The activation
function f(x) is equal to x for x 2 [0; 2] and equal to 2 for x > 2. Unit P is a threshold
unit which becomes active if z > 0:75. Unit Q is a self-reinforcing threshold unit which
is initially inactive but becomes active and stays active if z ever exceeds 1.5. Unit A is
a threshold unit which computes P AND :Q. Note that unit A becomes activated at
the end of any string in which right parentheses follow and match left parentheses.

During the processing of grammatical strings, the activations of the z unit lie on
the geometric series fractal, f 1

2n
: n 2 Ng. In essence, this unit is simply a counter which

keeps track of how many right parentheses are required to complete the string at any
point. Although one could also use the set of non-negative integers, N , to perform the
same function, the use of the bounded fractal permits the neural device to work with
units of bounded activation.

This simple example thus provides an indication of how fractal objects are useful
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in forming neural recognizers for in�nite-state languages.

Wiles and Elman (1995) study a backpropagation network that is trained on the
closely-related language, lnrn. The model is presented with a sequence from (lnrn)�

where n is randomly chosen from f1,: : : , 11g at each iteration. The task of the model
is to predict successor symbols at each point. Note that the model will be e�ectively
recognizing the language, lnrn, if it initially predicts just l, then predicts both l and r
until an r occurs, then predicts just r until an appropriate number of rs have occurred,
and returns, at this point, to predicting just l again. After many training episodes with
di�erent initial weight settings, Wiles and Elman found one network which generalized
the pattern up to n = 18 (i.e. it performed as though it were recognizing lnrn for
n 2 f1; : : : ; 18g).

Rodriguez et al. (to appear) noted that networks like Wiles and Elman's can
be viewed as nonlinear dynamical systems. They analyzed the corresponding linear
systems which closely approximated the behavior of the nonlinear systems and found
that the computation of lnrn was organized around a saddle point: when the network
was receiving a string of l's, it was iterating the map associated with the stable manifold
of the saddle point|in e�ect it was computing successive values of x(t) = t0e

�kt for some
positive k and t = 0; 1; 2; 3; : : :; when it was receiving the corresponding string of r's
it was iterating the map associated with the unstable manifold (same situation except
k < 0 and the points are spread out along a di�erent axis). With equally spaced values
of t, the exponential equation x(t) = t0e

�kt generates points on a geometric series fractal.
Thus again, a parenthesis balancer is using geometric series fractals for its computation,
this time along two di�erent dimensions (the distinction between dimensions is a handy
way of distinguishing the l and r states).

These two examples have shown how a particular type of fractal is useful for
modeling parenthesis-balancing languages. This is helpful, but it is a very simple case.
In the next section, I show how the same principles can be extended to a more complex
case.

1.2: A more complex fractal grammar.

The grammar shown in Table 1 is a context free grammar.

This grammar generates strings in the standard manner: the start symbol, \S" is
replaced with the string of symbols \A B C D" (in accord with rule 1a) or by no symbol
(in accord with Rule 1b); if the former, then each of the symbols \A", \B", \C", and
\D" is replaced with a string of symbols according to an appropriate rule. The process
halts when the string contains no symbols that are recursively de�ned (no capital letter
symbols, in this case). Rule 1b, where � denotes the empty string, is included as a
convenience|it gives the grammar the option of generating the empty string. Examples
of strings generated by Grammar 1 are:
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Table 1: Grammar 1.

Rule 1a. S ! A B C D
Rule 1b. S ! �

Rule 2a. A ! a
Rule 2b. A ! a S

Rule 3a. B ! b
Rule 3b. B ! b S

Rule 4a. C ! c
Rule 4b. C ! c S

Rule 5a. D ! d
Rule 5b. D ! d S

(1) a b c d

(2) a a b c d b c d

(3) a b c a a b c d b c d d

(4) a b c d a b c d a b c d

Note that this grammar generates center-embedded structures (egs. (2) and (3)) to
arbitrary depth. Thus its language is among those context free languages which cannot
be generated by �nite state machines.

A pushdown automaton for this grammar's language would need to keep track
of each \abcd" string that has been started but not completed. For this purpose it
could store a symbol corresponding to the last letter of any partially completed string
on a pushdown stack. For example, if we store the symbol \A" whenever an embedding
occurred under \a", \B" for an embedding under \b" and \C" for an embedding under
\c", the stack states will be members of fA;B;Cg�.3

It turns out that we can use the Sierpinski Triangle to keep track of the stack states
for this grammar. Consider the labeled triangle in Figure 3. Note that all the labels
are at the midpoints of hypotenuses of subtriangles. The labeling scheme is organized
so that each member of fA;B;Cg� is the label of some midpoint.

3No stack symbol for \d" is needed since \d" completes the sequence \abcd".
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Figure 3: An indexing scheme for selected points on the Sierpinski triangle. The points
are the analogues of stack states in a pushdown automaton. The label on each point
lists the stack with the top element �rst.
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Table 2: State transitions for the Sierpinski version of Grammar 1.

Input State change

a ~z  1
2
~z +

�
1=2
0

�
b ~z  ~z �

�
1=2
0

�
c ~z  ~z +

�
0

1=2

�
d ~z  2

�
~z �

�
0
1=2

��

We de�ne a computer that recognizes the language of Grammar 1 as follows. The
essence of the computer is a pair of coordinates corresponding to a position on the
Sierpinski triangle. Let ~z denote this pair. For convenience, we let the initial state of
the system be the midpoint of the largest hypotenuse, i.e., ~z0 = (1=2; 1=2). The state of
the computer is updated as shown in Table 2.

One can intepret Table 2 intuitively in the following way. The system performs
context-free embeddings by scaling its current state and switching origins. Initially, the
origin is (0, 0) and the current state is (1/2, 1/2). When an \a" is presented, the system
scales its current state down by a factor of two and moves the origin to (1/2, 0). When
a \b" is presented, the system assumes the current origin is (1/2, 0) and moves it back
to (0, 0). When a \c" is presented, the system assumes the origin is (0, 0) and moves
it to (0, 1/2). When a \d" is presented, the system moves the origin back to (0, 0) and
doubles the scale. Under these rules, the label on the current system state at each point
(as per Figure 3) corresponds to the stack state of the pushdown automaton referred to
earlier. This makes it possible to use the current position to predict which symbols are
possible at each point during processing. Table 3 speci�es the possibilities. If we specify
that the Sierpinski computer must start at the point (1=2; 1=2), make state transitions
according to the rules in Table 3 as symbols are read from an input string, and return
to (1=2; 1=2) when the last symbol is read, then the computer functions as a recognizer
for the language of Grammar 1.

For illustration, the trajectory corresponding to string (3) above is shown in Figure
4 (1. a is the position after the �rst symbol, an a, has been processed; 2. b is the position
after the second symbol, a b has been processed, etc.)

This section has given an intuitive feel for how context free languages can be
represented by dynamical automata. The next section formalizes the observations and
provides a convenient way of designing stacks using fractals.
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Table 3: Transition conditions for the Sierpinski version of Grammar 1.

State Possible inputs

z1 > 1=2 and z2 < 1=2 a, b
z1 < 1=2 and z2 < 1=2 a, c
z1 < 1=2 and z2 > 1=2 a, d
z1 = 1=2 and z2 = 1=2 a

Figure 4: The trajectory on the Sierpinski triangle corresponding to the string, \a b c a
a b c d b c d d".
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2. General formulation.4

Distance measures and complete metric spaces provide the environment in which dy-
namical automata reside. I start by introducing these basic concepts.

Def. A distance measure on a set X is a function d : X �X ! R which satis�es:

(i) d(x; x) = 0 for all x 2 X
(ii) d(x; y) = d(y; x) for all x; y 2 X
(iii) d(x; z) � d(x; y) + d(y; z) for all x; y; z 2 X

Def. A metric space, (X; d) is a set X together with a corresponding distance measure,
d.

Def. A sequence fxng1n=1 of points in a metric space (X; d) is called a Cauchy sequence
if for any number � > 0 there exists an integer N > 0 such that if m and n are integers
greater than N then

d(xn; xm) < �

Def. A sequence fxng1n=1 of points in a metric space (X; d) is said to converge to a point
x 2 X if, for any number � > 0 there is an integer N such that for all n > N ,

d(xn; x) < �

Def. A metric space M = (X; d) is said to be complete if every Cauchy sequence in M
converges to a point in X.

Another fundamental component of a dynamical automaton is the partition:

Def. A �nite partition of a space X is a set of sets, m1;m2; : : : ;mK where K 2
f1; 2; 3; : : :g such that

(i) mi � X for each i 2 f1; : : : ; Kg
(ii) mi \mj = � for i 6= j and i; j;2 f1; : : : ; Kg
(iii)

SK
i=1mi = X

We are now in a position to de�ne the dynamical automaton.

Def. A dynamical automaton is a device, M, with the following structure:

M = (X;F; P;�; IM;O; FR) (4)

4A summary of this discussion is provided in Tabor (submitted-b). A similar discussion is provided
in Tabor (submitted-a).
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(1) The space, X, is a complete metric space.5

(2) The function list, F , consists of a �nite number of functions, w1; : : : wN

where wi : X ! X for each i 2 f1; : : : ; Ng.
(3) The partition, P , is a �nite partition of X and consists of compartments,
m1; : : :mK .

(4) The input list is a �nite set of symbols drawn from an alphabet, �.

(5) The input mapping is a three-place relation, IM : P � � � F ! f0; 1g
which speci�es for each compartment, m, and each input symbol, s, what
function(s) can be performed if symbol s is presented when the system state
is in compartment m. If IM(m; s; f) = 0 for all f 2 AR then symbol s
cannot be presented when the system is in compartment m.

(6) The machine always starts at the start state, O 2 X. If, as successive
symbols from an input string are presented, it makes transitions consistent
with the Input Mapping, and arrives in the �nal region, FR, then the input
string is accepted.

Dynamical automata in general have super-Turing computing capacity (Moore, to
appear). Here I focus on a particular way of constraining them to let them emulate
context free grammars/pushdown automata. The notion of an iterated function system,
de�ned by Barnsley (1988), is useful in this regard. Barnsley employs the notion of a
contraction mapping:

Def. A function f : X ! X is called a contraction mapping on metric space X if there
exists 0 � k < 1 such that d(f(x); f(y)) � kd(x; y) for all x; y 2 X.

He then de�nes an iterated function system as, in e�ect, a set of contraction
mappings which share a space:

Def. (Barnsley, 1988) An Iterated Function System (IFS) consists of a complete metric
space (X; d) together with a �nite set of contraction mappings, wn : X ! X. The
notation for such an IFS is fX;w1; : : : ; wNg.

Here, I �nd it convenient to generalize the notion by removing the requirement
that the functions be contraction mappings. Hence:

Def. A Generalized Iterated Function System (GIFS) consists of a complete metric space
(X; d) together with a �nite set of functions, wi : X ! X, i 2 f1; : : : ; Ng.

The idea is to use the functions of an iterated function system to move around in
a bounded space in the manner illustrated in Section 1. For the purpose of emulating a
context free grammar, it is essential to be able to keep track of arbitrary stack states.
This implies that the system needs to be capable of following an arbitrary number of

5In this paper, I do not use completeness in the analysis. Nevertheless, it is a convenient property
to have for other anlayses so I build it into the framework here.
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branching paths. To this end, I de�ne the notion of a \cascade point". First I give some
preliminary de�nitions.

Def. Let S = fX;w1 : : : wNg be a GIFS. Consider a string, � = �1�2 : : : �K with
�i 2 f1; : : : ; Ng for i 2 f1; : : : ; Kg. Let w� denote the composition w�1 �w�2 � : : : �w�K .
For x0 2 X, the set C = fx 2 X : x = w�(x0) for some � 2 f1; 2; : : : Ng�g is called the
orbit of x0 under S.

Thus each point on the orbit of a point x0 can be reached by starting at x0 and
applying some sequence of operations from the GIFS. The orbit itself is the set of all such
points. The notion of orbit is perhaps more naturally applied to sets than to individual
points (Barnsley , 1988) but there is no need to examine set orbits here so I have simply
de�ned the case in which the starting set has only one point in it.

Def. Let S = fX;w1 : : : wNg be a GIFS. Let � = �1�2 : : : �K be a string in f1; : : : ; Ng�.
Consider the point x = w�(x0) 2 X. The string � is called an x0-address of the point x
under S.

Def. Let S = fX;w1 : : : wNg be a GIFS. Let x0 be a point in X. If every point in the
orbit of x0 has a unique x0-address, then x0 is called a cascade point. In this case, the
orbit, C, of x0 is called the cascade of x0. If x 2 C and x 6= x0 then the �rst symbol of
the x0-address of x is denoted topC(x). If x = x0, we set topC(x) = �.

Cascades form the essence of the mechanism to be proposed for simulating push-
down automata with dynamical automata. Note that when it is associated with the
functions of a GIFS, a cascade can be thought of as a binary branching tree of arbitrary
depth. The mechanism to be described uses each point on a cascade as a representation
for the stack contents. Cascades are a particular species of the fractals discussed in Sec-
tion 1. Since I do not need to use fractals more generally, I do not de�ne them formally
here. (See Barnsely, 1988 for a formal treatment.)

It is useful to be able to identify cascade points of GIFSs. The following de�nition
and theorem help with this.

Def. Let X be a metric space with GIFS S = fX;w1 : : : wNg. A set O � X is called a
pooling set of S if it satis�es the following:

(i) wi(O) \ wj(O) = � for i; j 2 f1; : : : ng and i 6= j.

(ii)
Sn
i=1wi(O) � O

The set of points in O that are not in
Sn
i=1wi(O) is called the crest of O.

Thm 1. Let S = fX;w1 : : : wNg be a GIFS where w1; : : : ; wN are one-to-one functions.
Suppose O � S is a pooling set of S and x0 is in the crest of O. Then x0 is a cascade
point of S.

Pf: This theorem claims, in e�ect, that if two identical dynamical automata follow a
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GIFS into a cascade and their paths diverge at some point, then they will never rejoin.
I prove the theorem by assuming that rejoins are possible and deriving a contradiction.

Suppose, contrary to fact, that there exists � = �1�2 : : : �J and � = �1�2 : : : �K 2
f1; : : : ; ng� where w�(x0) = w�(x0) but � 6= �. Let M be equal to the minimum of J
and K. Then there are two possibilities to consider. Either the two paths diverge before
they come to an end or one comes to an end and the other keeps going. That is, either
(i) there exists h 2 f1; : : : ;Mg such that �i = �i for i 2 f1; : : : ; h � 1g and �h 6= �h or
(ii) �i = �i for i 2 f1; : : :Mg and K 6= J .

Under case (i), the fact that w�(x0) = w�(x0) and the fact that w1; : : : ; wN are one-to-
one imply that w�

�h
(x0) = w�

�h
(x0) where ��h = �h : : : �J and ��h = �h : : : �K. But

w�
�(h+1)

(x0) 2 O and w�
�(h+1)

(x0) 2 O by condition (ii) of the de�nition of pooling
set. Therefore w�

�h
(x0) 6= w�

�h
(x0) by condition (i) of the de�nition of pooling set, a

contradiction.

Without loss of generality, we can assume that J > K in case (ii). In this case, the
fact that w�(x0) = w�(x0) and the fact that w1; : : : ; wN are one-to-one imply that
w�

�(M+1)
(x0) = x0. Condition (ii) of the de�nition of pooling set thus implies that x0 is

in the complement of the crest of O. But this contradicts the assumption that x0 is in
the crest of O.

Since the assumption led to a contradiction in both cases, it must be the case that � = �.
2

Now we are in a position to de�ne the analogs of the operations of a pushdown
automaton.

Def. Let S = fX;w1 : : : wNg be a GIFS with cascade point x0 and corresponding
cascade C. Then wi : C ! C is called a push function on C.

Def. Let S = fX;w1 : : : wNg be a GIFS with cascade point x0 and corresponding
cascade C. Let Y = fx 2 C : topC(x) = i for i 2 f1; : : : ; Ngg. Suppose wi is invertible
on Y . Then the function f : Y ! C such that f(x) = w�1

i (x) is called a pop function
on C.

Def. The push, pop, and pop � push functions (composition of one pop with one push)
functions C are called stack functions on C.

Pursuing the analogy with a pushdown automaton, the following two de�nitions
make it possible to keep track of changes in the control state.

Def. Let S = fX;w1 : : : wng be a GIFS. Let C1 and C2 be disjoint cascades under S
with cascade points x10 and x20 respectively. Then the function f : C1 ! C2 such that
for all x 2 C1 the x10-address of x is equal to the x20-address of f(x) is called a switch
function. Note that f is one-to-one and onto, and hence invertible for all x0 2 C2.

Def. If C1; : : : ; CK are cascades on GIFS S satisfying
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Ci \ Cj = � for i 6= j.

(i.e., they are disjoint) and x 2 Ci for i 2 f1; : : : ; Kg then i is called the index of x with
respect to the set fC1; : : : ; CKg

The idea, then, is to piece together stack functions and switch functions to design
a machine that performs the operations of a pushdown automaton:

Def. Let M be a dynamical automaton on metric space X. We say M is a push-
down dynamical automaton (PDDA) if there exists a GIFS, S = fX;w1; : : : ; wNg with
cascade points x10; x20; : : : ; xK0 2 X, K 2 f1; 2; 3; : : :g and corresponding cascades,
C1; C2; : : : ; CK such that

(i) C1; C2; : : : ; CK are disjoint.

(ii) For x 2 SN
i=1Ci, the partition compartment of x is determined by the

conjunction of the index, i, of x and topCi(x).

(iii) Letm be a compartment of the partition ofM . Each function f : m! X
in the input mapping is either a stack function, a switch function, or a
composition of the two when restricted to points on one of the cascades.

(iv) The start state, O, and �nal region, FR, of M are contained in
SK
i=1 xi0.

The next step is to show that PDDA's behave like pushdown automata and thus
recognize context free languages. Here I follow the notation of Hopcroft and Ullman
(1979) for pushdown automata.

Def. (Hopcroft and Ullman) A pushdown automaton (PDA) is a machine, M =
(Q;�;�; �; q0; Z0; F ) where

(1) Q is a �nite set of states.
(2) � is a �nite alphabet called the input alphabet.
(3) � is a �nite alphabet called the stack alphabet.
(4) q0 2 Q is the initial state.
(5) Z0 2 � is the start symbol.
(6) F � Q is the set of �nal states.
(7) � is a mapping from Q� (� [ f�g)� � to �nite subsets of Q� ��.

We assume that a pushdown automaton, M , is associated with a string of stack
symbols called the stack. The �rst symbol in the stack string is called the top of the
stack. Initially, the stack consists of just the symbol Z0 and thus Z0 is the top of the
stack.

We think of M as processing a string of symbols � 2 �� one symbol at a time,
from left to right. It is convenient to de�ne the instantaneous description of pushdown
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automaton M at each point in time as the triple, (q; w; 
), where q is the current state,
w is the right substring of � that has not yet been processed, and 
 is the current state
of the stack. For Z 2 � and �; � 2 ��, we say that (q; a�; Z�) can go to (p; w; ��) (or
(q; a�; Z�) ` (p; w; ��)) if �(q; a; Z) contains (p; �). If, by a series of \go to" moves, M
can get from (q; ��; 
) to (p; �; �) upon processing the symbols of �, then we say that
(q; ��; 
) leads to (p; �; �). If (q0; �; Z0) leads to (p; �; 
) for some p 2 F and 
 2 ��, then
we say that M accepts � by �nal state. If (q0; �; Z0) leads to (p; �; �) for some p 2 Q then
we say that M accepts � by empty stack.

For convenience, I refer to the sequence of symbols on the stack at the current time
as the stack state of the PDA. I refer to the current member of Q as the control state.

PDDAs are very similar in form to PDAs. The distinct cascade indices of a PDDA
correspond to the distinct control states of a PDA. The distinct top values of each cascade
in a PDDA correspond to the distinct top-of-stack symbols of a PDA. Computation in
a PDDA is a matter of switching cascades and/or adding or removing symbols from
the addresses of points. Computation in a PDA is a matter of switching control states
and/or pushing or popping the stack. The rest of the formal development in this section
is devoted to being precise about the details of this analogy. At the end of the section
some examples are provided.

Def. The set of �nite strings accepted by a pushdown automaton M is called the
language recognized by M .

It turns out that the set of languages recognized by pushdown automata by �-
nal state is the same as the set of languages recognized by pushdown automata by
empty stack (Hopcroft and Ullman, p. 114). Therefore, if one is interested only in
demonstrating language recognition equivalence, it is su�cient to show equivalence un-
der recognition by �nal state, or recognition by empty stack.

It is well known (Hopcroft and Ullman, pp. 115, 116) that the set of languages
recognized by pushdown automata is precisely the set of context free languages.

It will be useful to consider some simple variants on Hopcroft and Ullman's push-
down automata.

Def. The single in/out pushdown automata are those which satisfy the condition that
if �(q; a; Z) contains (p; 
), then 
 is either � (a pop move), Z (no change in the stack),
or Y Z for some stack symbol Y (a push move).

It is easy to convert a general pushdown automaton to a single in/out pushdown
automaton by adding extra states which push symbols onto the stack in the absence
of input wherever multiple successive push moves are allowed. Moreover, the single
in/out pushdown automata are a subset of general pushdown automata. Thus the set of
languages recognized by single in/out PDA's is precisely the set of context-free languages.

Def. The ground zero pushdown automata are those which start with an empty stack
and accept a string when the stack is empty and the control state, q, is among the set
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of �nal states, F .

Given the equivalence of standard PDA's and single in/out PDAs, it is easy to
see that ground zero PDA's are also equivalent. A single in/out PDA which accepts
string � must eventually arrive at a point where Z0 is on the stack and it pops Z0.
Instead of letting the machine pop Z0 at this point, let it switch to a new state q0 where
fq0g = F . This machine recognizes the same language as the single in/out PDA but
Z0 is super
uous. Therefore, with some minor adjustments in the notation associated
with the transition function, we can let the machine start and end with an empty stack.
To make the reverse translation, we add another state which is only entered when the
ground-zero automaton is in F and its stack is empty, and make use of the equivalence
between acceptance by �nal state and acceptance by empty stack.

With these technical adjustments out of the way, it is straightforward to show that
pushdown dynamical automata (PDDA's) generate precisely the context free languages.

Thm 2. The set of languages recognized by pushdown dynamical automata (PDDA's)
is precisely the set of context free languages.

Pf: I proceed by showing equivalence between pushdown dynamical automata and
ground zero pushdown automata.

Part (i). (Every pushdown dynamical automaton recognizes the language of some
ground zero pushdown automaton).

Consider the pushdown dynamical automaton

Md = (X;F; P;�d; IM; x10; FR)

Let the associated GIFS be S = fX;w1; : : : ; wNg with cascade points x10; x20; : : : ; xK0 2
X for K 2 f1; 2; 3; : : :g and corresponding cascades, C1; C2; : : : ; CK. De�ne a corre-
sponding ground zero pushdown automaton

Ma = (Q;�a;�; �; q; Z0; F )

as follows. Because Ma is a ground zero PDA, its stack is initially empty (Z0 = �).
Let �a = �d. For each cascade, Ci, if Md is on Ci, let the control state of Ma be qi.
Thus de�ne Q as fqi : i 2 f1; : : : ; Kgg. Let � be f1; : : : ; Ng. Let � be de�ned as
follows. Consider x a point in

SK
i=1Ci. For each possible index value i 2 f1; : : : ; Kg, and

each possible value Z = topCi(x) 2 f�; 1; : : : Ng, compute the partition compartment
to which x belongs (this is possible under the de�nition of a PDDA). Let this partition
compartment be compartment j. Examine the input mapping, IM , for rows containing
j. For each such row, (j; s; f) for s 2 � and f 2 F , let � be de�ned as follows:

(i) If f = wh is a push function, then let (qi; hZ) be a member of �(qi; s; Z).
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(ii) If f = w�1
h is a pop function, then let (qi; �) be a member of �(qi; s; Z).

(iii) If f is a switch function which switches from cascade i to cascade l, then
let (ql; Z) be a member of �(qi; s; Z).

(iv) Handle the composite functions analogously.

(v) If xi0 is in the �nal region of Md, then let qi 2 F .

Note that � is well-de�ned in every case because C1; : : : ; CK are disjoint cascades and
Md performs its computations on their union.

Let q1 be the initial state ofMa (i.e., let the initial state bear the index of the start state
of Md).

For x = x10 it can be truly asserted that if the index of x is i, the state of Ma is qi,
and if topCi(x) is Z, then the top of the stack of Ma is Z. Moreover, this situation is
preserved under �. Thus, if the state x, moves by legal transitions from x10 to xj0 under
Md during the processing of string �, then (q0; �; �) leads to (qj; �; �) under Ma and vice
versa. Thus Ma and Md recognize the same language.

Part (ii). (The language of each ground zero pushdown automaton is recognized by
some pushdown dynamical automaton).

This part is the reverse of the previous part, with a particular fractal speci�ed.

Consider the ground zero pushdown automaton,

Ma = (Q;�a;�; �; q0; F ) (5)

We need to de�ne a corresponding pushdown dynamical automaton,

Md = (X;F; P;�d; IM; x10; FR) (6)

Suppose j � j= N , N a positive integer. Let ~en 2 RN be the vector with a 1 on dimension
n and 0's on all other dimensions. Suppose j Q j= K, K a positive integer. De�ne the
GIFS,

S = fRN+1;wn; n 2 f1; : : : ; Ngg

where

wn(~x) =

 
1
2
~x[N ]

xN+1

!
+

 
1
2
~en
0

!

where ~x[N ] =

0
B@ x1

: : :
xN

1
CA
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Consider the set C0 = f~xk0 : ~xk0 =
� ~1=2
k=K

�
; ~1=2 = 1

2

PN
i=1 ~ei and k 2 f1; : : : ; Kgg. Then

the members of C0 are cascade points of S. To see this, consider ~xk0 and let O be the
open unit hypercube in the positive quadrant of RN+1 with a corner at the origin. Note
that for all ~x 2 O, the nth coordinate of wn(~x) is in the interval (1=2; 1) and the mth
coordinate of wn(~x) is in (0; 1=2) for m 6= n, m;n � N . Therefore, each wn(O) � O,
and wn(O) \ wm(O) = �. Moreover, ~xk0 62 wn(O) for each n. Thus O is a pooling
set of S and, by Theorem 1, xk0 is a cascade point. Moreover, the cascades C1; : : : ; CK

corresponding to x10; : : : ; xK0 are disjoint.

Let the N stack states of Ma be labeled 1; : : : ; N . Assume, without loss of generality,
that Z0 = 1. Let the K \�nite states" of Ma be labeled q1; : : : ; qK . Assume, without
loss of generality, that q0 = q1.

Now I de�ne the parts of Md.

Let X be [0; 1]N .

Let �d = �a.

Let the partition P be partially speci�ed by fXn � i
K

for n 2 f0; : : : ; Ng and i 2
f1; : : : ; Kg : Xn = (0; 1

2
)N + 1

2
~en for n 2 f1; : : : ; Ng and X0 = ~1=2 2 RNg. Let the index

of compartment Xn � i
K
be M(i;n) for i 2 f1; : : : ; Kg and n 2 f0; 1; : : : ; Ng. Note that

since x10 is the start state of Md, Md is initially in compartment M(1;0).

Build the input mapping, IM as follows.

(i) If (qi; hn) is a member of �(qi; s; n) then let (M(i;n); s; wh) be a member of
IM . (push function)

(ii) If (qi; �) is a member of �(qi; s; n) then let (M(i;n); s; w
�1
k ) be a member

of IM . (pop function)

(iii) If (qi; n) is a member of �(qj ; s; n) then let (M(i;n); s;
�

~x
xN+1+

i�j

K

�
) be a

member of IM . (switch function)

(iv) Handle the composite cases analogously.

Note that s could be � (no symbol) and n could be � (empty stack) in each of these
cases.

Compile F as the collection of functions that occur in the third column of IM .

For each, i 2 f1; : : : ; Kg, if qi 2 F , then let xi0 be a member of FR.

At the beginning of processing, when the state is q1 and top of the stack of Ma

is 1, the current state ~x of Md (namely, ~x10) has index 1 and topC1(~x) = �. Thus it
can be said at this point that when the state of Ma is qi and the top of the stack is Z,
then the current state x of Md has index i and topCi(~x) = Z and vice versa. Moreover,
the de�nition of the input mapping implies that this situation never changes during the
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course of processing a grammatical string. Thus if (q0; �; �) leads, under Ma to (qj ; �; �)
for qj 2 F then the state ~x, moves by legal transitions under Ma from ~x10 to ~xj0 2 FR
during the processing of string � and vice versa. Thus Ma and Md recognize the same
language. 2

Examples.

The remainder of this section gives some examples which show how the results above
make it easy to design pushdown dynamical automata for various context free languages.

Example 2.1. A simple dynamical automaton for balancing parentheses is given
by

M = ([0; 1]; f1
2
x; 2xg; P; fl; rg; IM; 1; f1g) (7)

where the partition, P , is given by

Index Compartment

1 f1g
2 [0; 1)

and the input mapping, IM is given by

Compartment Index Symbol Function

1 l x! 1
2
x

2 l x! 1
2
x

2 r x! 2x

We can use Theorem 2 to show that this dynamical automaton generates a context
free language. First, we need to choose an appropriate iterated function system. Con-
sider the GIFS, S = fR;w1 =

1
2xg. Note that 1 is a cascade point of S. This is evident

from the fact that w1 is the only function in S and that 0 < w1(x) < x for all x > 0.

Now we will show that M is a PDDA under S. Let C be the cascade of the point,
1. fCg satis�es condition (i) of the de�nition of a PDDA trivially since there is only one
cascade. Also, for x 2 C, if topC(x) = 0 then the partition is 1 and if topC(x) = 1 then
the partition is 2 so topC(x) alone determines the partition (condition (ii)). There are
three functions in the input mapping. The �rst, f : f1g ! R = 1

2x is a push function
when restricted to points on C. The second, f : [0; 1) ! R = 1

2
x is similarly a push
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function. The third, f : [0; 1) ! R = 2x is similarly a pop function. Thus condition
(iii) is satis�ed. Moreover, M is initially at the cascade point, 1, its �nal region is f1g,
so condition (iv) is satis�ed. This shows that M recognizes a context-free language.

Example 2.2. A closely-related PDDA recognizes lnrn for n 2 f1; 2; 3; : : :g. Let

M = (

 
[0; 1]

[0; 1]

!
; f
 

1
2
x1
x2

!
;

 
2x1

x2 + 1

!
;

 
2x1
x2

!
g; P; fl; rg; IM;

 
1

0

!
;

 
1

1

!
) (8)

where
�
[a;b]
[c;d]

�
denotes the set of points

�
x1
x2

�
such that x1 is in the interval [a; b] and x2 is

in the interval [c; d]. Relevant parts of P are given by

Index Compartment

1
�
1
0

�
2

�
(0;1)
0

�
3

�
(0;1)
1

�
4

�
1
1

�

and IM is given by

Compartment Index Symbol Function

1 l ~x!
� 1
2
x1
x2

�
2 l ~x!

� 1
2x1
x2

�
2 r ~x!

�
2x1
x2+1

�
3 r ~x!

�
2x1
x2

�

Note that input mapping IM permits no moves out of the �nal state so concatenations
of sentences from lnrn are properly disallowed.

In this case to establish context free language status, we consider the GIFS, S =

fR2;w1 =
�1
2
x1
x2

�
g. Note that x10 =

�
1
0

�
and x20 =

�
1
1

�
are both cascade points and they

have disjoint cascades (condition (i) of the de�nition of a PDDA). Let these cascades be
called C1 and C2, respectively. Note that the partition compartment is 1 if the index
of x is 1 and topC1(x) = �. It is 2 if the index of x is 1 and topC1(x) = 1. It is 3 if
the index of x is 2 and topC2(x) = 1. It is 4 if the index of x is 2 and topC2(x) = �.
Thus the compartment is predictable from the conjunction of the index and the value
of top in every case (condition (ii)). The function

�
x1=2
x2

�
restricted to C1 is a push
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function. The function
�
2x1
x2

�
restricted to C2 is a pop function. The function

�
2x1
x2+1

�
is

equal to
�
2x1
x2

�
�
�

x1
x2+1

�
, i.e., it is the composition of a switch function from C1 to C2 and

a pop function on C2 (condition (iii)). Since, moreover, the start and end points are the
cascade points of C1 and C2 respectively (condition (iv)), M satis�es the de�nition of a
PDDA. Thus, M recognizes a context free language.

Example 2.3. The dynamical automaton described in Section 1.2 recognizes the
language of Grammar 1. We can write the Dynamical Grammar of Section 1.2 in the
notation of Section 2 as follows.

M = (triangle(

 
1

0

!
;

 
0

0

!
;

 
0

1

!
);F ; P; fa; b; cg; IM;

 
1=2

1=2

!
; f
 
1=2

1=2

!
g) (9)

where triangle(x; y; z) refers to the interior and boundary of the triangle with vertices
at x; y and z. The function list, F , is the list of functions given in Table 2. The partition
P is

Index Compartment

1 f
� 1
2
1
2

�
g

2 triangle(
�
1
0

�
;
� 1
2
0

�
;
� 1
2
1
2

�
)�

� 1
2
1
2

�
3 [0; 1

2
)� [0; 1

2
)

4 triangle(
� 1

2
1
2

�
;
�
0
1
2

�
;
�
0
1

�
)�

� 1
2
1
2

�

and IM is given by

Compartment Index Symbol Function

2 b ~z  ~z �
�
1=2
0

�
3 c ~z  ~z +

�
0
1=2

�
4 d ~z  2

�
~z �

�
0
1=2

��
1 [ 2 [ 3 [ 4 a ~z  1

2
~z +

�
1=2
0

�

In this case, it makes sense to examine the GIFS, S = ftriangle(
�
1
0

�
;
�
0
0

�
;
�
0
1

�
);w1 =

1
2
~z; w2 =

1
2
~z+

�1
2
0

�
; w3 =

1
2
~z+

�
0
1
2

�
g. The point

� 1
2
1
2

�
is a cascade point S. Theorem 1 guar-

antees this as follows. The functions, wi, are all one-to-one. Consider, O, the interior of
triangle(

�
1
0

�
;
�
0
0

�
;
�
0
1

�
). Note that w1(O) is the interior of triangle(

�
1
0

�
;
�
0
0

�
;
�
0
1
2

�
), w2(O) is
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the interior of triangle(
�
1
0

�
;
� 1
2
0

�
;
� 1
2
1
2

�
), and w2(O) is the interior of triangle(

� 1
2
1
2

�
;
�
0
1
2

�
;
�
0
1

�
).

Thus, O is a pooling set of S. Moreover, the start state of M ,
�
1=2
1=2

�
, is in the crest of

this set and hence is a cascade point of S. It is easy to check that M satis�es the
de�nition of a PDDA: there is only one cascade so disjointness is trivial (condition (i));
the partition compartment is predictable from topC(x) in every case (condition (ii)); the
functions are all stack functions in this case and happen to be uniquely associated with
the symbols of the alphabet: a evokes a push function, d evokes a pop function, b and c
evoke pop � push's (condition (iii)); the automaton starts at the cascade point and ends
at it (condition (iv)). Thus M models a context free language.

It is also not hard to use the proof of Theorem 2 to convert M into a pushdown
automaton. Well-known techniques (e.g., Hopcroft and Ullman, 1979, pp. 116-119) can
then be used to convert this pushdown automaton into Grammar 1.

In all of these examples, the functions of the underlying GIFS's are contraction
mappings. One may well wonder if cascades only arise in standard iterated function
systems (a la Barnsley, 1988) in which all the functions are contraction mappings. The
following case is an interesting counterexample.

Example 2.4 Consider the GIFS, S = f[0; 1];w1; w2g where the functions are
given by

w1 =
1

2
(1 +

p
1� x) (10)

w2 =
1

2
(1�p1� x) (11)

Since w1 maps the interval O = (0; 1) onto (1=2; 1) and w2 maps this interval onto
(0; 1=2), O is a pooling set of S. Moreover, the point 1=2 is (in) the crest of O. Thus S
can be used to record stack states over a two-symbol alphabet. However, w1 and w2 are
not contraction mappings. For example, w2(0:99)� w2(0:98) > 0:01.

This example is interesting in part because w1 and w2 are the two inverses of the
much studied \logistic map", f(x) = rx(1 � x) when r = 4. The logistic map has at-
tracted attention because it is a relatively simple (one-dimensional) function with chaotic
trajectories (see Stogatz, 1994, for an introduction). Crutch�eld and Young (1990, 1994)
analyzed f as the generator for a string � = �1�2�3 : : : where �i 2 f0; 1g for all i by
considering fk(1=2) for k = 1; 2; 3; : : : and letting �k = 1 if fk > 1=2 and 0 otherwise.
They found that when r = 3:57 : : : (the so-called \onset of chaos"), the set of initial
2n-character substrings of � for n 2 N constitutes a context free language. Here, I have
taken the opposite tack: inverting a closely-related map introduces an indeterminism
which allows us to distinguish histories and thus use the map to model arbitrary gram-
mars (one instance of the inverted logistic su�ces for stacks alphabets with only two
symbols; multiple instances can be used to accomodate more stack symbols). Loosely,
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one can say that while Crutch�eld and Young have analyzed a chaotic map to assess
the speci�c character of its complexity, I have described a way of using the same map to
perform a general class of computations of a similarly complex sort. Given Crutch�eld
and Young's results, an interesting question is whether there is a canonical grammar
associated with each value of r for the inverse logistic map device just described. It may
be, for example, that for some languages, the corresponding inverse logistic automaton
is more tolerant of imprecision in the identi�cation of the �nal region than for others. I
leave this as a question for future research.

3. Implementation in a neural network

Dynamical automata can be implemented in neural networks by using a combination
of signaling units and gating units. By a signaling unit, I mean the standard sort of
unit which sends out a signal re
ecting its activation state to other units it is connected
to. By a gating unit, I mean a unit which serves to block or allow transmission of a
signal along a connection between two other units (see discussion in Section 0.3 above).
All units (signalling and gating) compute a weighted sum of their inputs and pass this
through an activation function|either identity or a threshold (a sigmoid can be used in
place of both of these with some distortion of the computation due to the nonlinearity).

The use of simple a�ne functions (~z  q~z + r) to de�ne the state changes in a
dynamical automaton makes for a simple translation into a network with signalling and
gating units. The coe�cients q and r determine weights on connections. The connec-
tions corresponding to linear terms (e.g., q) are gated connections. The connections
corresponding to constant terms (e.g., r) are standard connections.

I will illustrate a neural network implementation of the dynamical automaton which
generates the same set of strings as Grammar 2 (see Table 4). Grammar 2 is identical
to Grammar 1 (discussed in Section 1.2 above) except that it contains the extra rule,
4c: C ! a. This rule introduces some structural ambiguity in the sense that there
are initial substrings for Grammar 2 (e.g. 'a b a') which can be generated by trees
involving di�erent rules. Although dynamical automata handle structural ambiguity in
an analagous way to the way pushdown automata do (that is, by guessing a parse as
soon as the ambiguity is encountered), and thus do not o�er obvious new insights, I
am illustrating an ambiguous case here in order to make it clear what the treatment of
structural ambiguity looks like in this framework.

A neural implementation of Grammar 2 is shown in Figure 5. Table 5 speci�es the
weight values and unit types. The network processes strings by representing successive
symbols as localist bit vectors on its input layer (the I units) and predicting possible
successor symbols on its output layer (the O units) (Elman 1990). The units z1 and z2
form the core of the network. Their values at each point in time specify the coordinates
of the current position on the Sierpinski triangle. They have multiple connections going
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Table 4: Grammar 2.

Rule 1a. S ! A B C D
Rule 1b. S ! �

Rule 2a. A ! a S
Rule 2b. A ! a

Rule 3a. B ! b S
Rule 3b. B ! b

Rule 4a. C ! c S
Rule 4b. C ! c
Rule 4c. C ! a

Rule 5a. D ! d S
Rule 5b. D ! d

out of and into them. For example, z1 has three self-connecting loops, one through gate
�11, one through gate �12, and one through gate �13. These gates are enabling threshold
gates in the sense that if a gate is not activated, then no signal is transmitted along
the corresponding connection. The units Ia; Ib; Ia;c; and Id are input units. Ib, Ia;c,
and Id have activation 1 when the input symbol is b, c, or d, respectively. When the
input symbol is an a, then one or the other of Ia and Ia;c takes on value 1 with equal
probability (a stochastic neuron not shown here can implement this feature). Each
input unit interacts with the z units in two ways: it opens one gate on the self-recurrent
connections; and it transmits a weighted signal directly to each z unit. The z units take
on activations equal to the weighted sum of their inputs. Although this means that in
principle, their activations could be unbounded, when the net is processing grammatical
strings, all of their computations take place in the bounded region (0; 1)|this is why it
works reasonably well to use a quasi-linear (e.g. sigmoidal) activation function that is
almost linear in this region. The p units are threshold units which serve to translate the
z activations into binary values. The output units, Ob through Od are threshold units
which respond to the p units. Unit Oa happens to need to be on all the time in this
grammar so it has no inputs and its threshold is below 0. When an output unit is on,
the letter or letters corresponding to it are interpreted as possible next words. A string
is deemed grammatical if, at each step of processing, the activated input unit is one of
the predicted outputs from the previous step and if the network arrives at the initial
state (~z = (1=2; 1=2)) when the last word is presented.

As indicated above, this network handles ambiguity in the same way that a push-



33

Figure 5: Network 1. A neural implementation of Grammar 1. Square nodes denote
gating units and circular nodes denote signalling units.

��
��
Oa ��

��
Ob ��

��
Oa;c ��

��
Od

��
��
p1 ��

��
p2

��
��
z1 ��

��
z2

�11 �12 �13 �21 �22 �23

��
��
Ia ��

��
Ib ��

��
Ia;c ��

��
Id
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Table 5: Weights and unit types for the neural implementation of Grammar 1.

Unit Type Input Weight

�11 Threshold = 1=2 Ia 1
�12 Threshold = 1=2 Ib; Ia;c 1
�13 Threshold = 1=2 Id 1
�21 Threshold = 1=2 Ia 1
�22 Threshold = 1=2 Ib; Ia;c 1
�23 Threshold = 1=2 Id 1
z1 Linear Ia 1/2

Ib -1/2
z2 Linear Ia;c 1/2

Id -1
z1 Linear z1 via �11 1/2
z1 Linear z1 via �12 1
z1 Linear z1 via �13 2
z2 Linear z2 via �21 1/2
z2 Linear z2 via �22 1
z2 Linear z2 via �23 2
p1 Threshold = 1=2 z1 1
p2 Threshold = 1=2 z2 1
Oa Threshold = �1 | |
Ob Threshold = 1=2 p1 1
Oa;c Threshold = �1=2 p1 -1

p2 -1
Od Threshold = 1/2 p2 1
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down automaton does: by guessing. In the example at hand, since \a" is an ambiguous
symbol, and the guesses are evenly distributed, the network has an equal chance of
guessing wrong and right each time it encounters an \a". Thus, we consider the lan-
guage generated by the network as the set of strings that it can deem grammatical, even
though in a given instance, it may judge any legal string \ungrammatical". Because
context often determines the proper interpretation of an ambiguous symbol (e.g. an
\a" occuring initially can only be generated by rule 2b), it is possible to use additional
neural machinery to constrain the choice to the contextually appropriate one. In this
case, a connection from output unit Oa;c to the stochastic neuron mentioned above can
ensure that a random choice is made between Ia and Ia;c on input \a" when Oa;c is on
and that only Ia is activated on input \a" when only Oa is on.

This section has illustrated a method of implementing dynamical automata in
neural networks. The next section considers the implications of dynamical automaton
structure for the study of relationships among languages of di�erent \complexities" in
the Chomsky Hierarchy sense.

4. Non context-free languages.

When a dynamical automaton is con�gured as a pushdown dynamical automaton (PDDA),
its functions exhibit precise symmetries in the following sense: it is essential that pop
operations have the e�ect of undoing push operations exactly. One might well wonder
what happens if one adopts a more physically realistic perspective and allows the push
and pop operations to be only approximate mirrors of one another.

The result can be loss of context-freeness. But the loss is not catastrophic in this
case. Instead, the neighboring languages in parameter space take on what one might
aptly call \mild context sensitivity".6

I discuss a simple case to make this point. Consider the following parameterized
extension of the dynamical automaton for the language lnrn which was discussed in
Example 2.2:

M = (

 
[0;1)

[0; 1]

!
; f
 
mLz1
z2

!
;

 
mRz1
z2 + 1

!
;

 
mRz1
z2

!
g; P; fl; rg; IM;

 
1

0

!
; f
 
z1 � 1

z2 = 1

!
g) (12)

where mL and mR > 0, and the relevant part of P is now

6I thank Jordan Pollack for drawing my attention to this \precarious" quality of context-free dy-
namical recognizers, and thus motivating the investigation described in this section.
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Figure 6: M(1=2; 17=8) accepting l3r3.

z1

z2

(0, 0)

(0, 1)

(1, 0)

[

l
ll

r

r
r

Index Compartment

1
�
1
0

�
2

�
(0;1)
0

�
3

�
(0;1)
1

�

and IM is given by

Compartment Index Symbol Function

1 l ~z !
�
mLz1
z2

�
2 l ~z !

�
mLz1
z2

�
2 r ~z !

�
mRz1
z2+1

�
3 r ~z !

�
mRz1
z2

�

The scalars, mL (\Leftward move") and mR (\Rightward move") are parameters which
can be adjusted to change the language the DA recognizes. Figure 6 illustrates the
operation of this dynamical automaton. When 0 < mL = m�1

R < 1, M recognizes the
language lnrn; n 2 f1; 2; 3; : : :g.
We can analyze this automaton as follows. It recognizes strings of the form lnrk, n 2
f1; 2; 3; : : :g where k is the smallest integer satisfying

mn
Lm

k
R � 1

Since we are only considering cases where mL > 0,
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Table 6: A context free grammar for generating lnr2n.

S ! l r r
S ! l S r r

mk
R � m�n

L

k � logmR
m�n

L

k = [[�n logmR
mL]]

where [[x]] denotes the smallest integer greater than or equal to x.

If mL is a negative integer power of mR, then the language of M can be described
with a particularly simple context-free grammar. Example 4.1 illustrates.

Example 4.1. Let mL = 1
4
and mR = 2. Thus k = [[�n log2

1
4
]] = 2n. The language

is thus lnr2n. This language is generated by a context free grammar with only two rules
(Table 6).

If mL is a non-whole-number rational power of mR (or vice versa), then the re-
sulting language is still context free, but its grammar is more complicated. Example 4.2
illustrates a case like this.

Example 4.2. Let, mL = 1
4
and mR = 4

5
6 � 3:174802. Thus k = [[1:2n]]. The language

recognized by this particular parameterization ofM is thus A = lnr[[1:2n]]. This language
is substantially more complicated than the language of the previous example. It requires
seven rules in context free grammar format (Table 7). The number of rules grows with
the length of the cycle of the coe�cient of n.7

If mL is an irrational power of mR or vice-versa, then M generates a non context-
free language. We can show this using the Pumping Lemma for Context Free Languages
(Hopcroft and Ullman, 1979, p. 125).

Proposition. The language A = lnr[[qn]] for q irrational is not a context free language.

Pf: I proceed by showing that if A = lnr[[qn]] is a context free language, then q is rational.

The Pumping Lemma for Context Free Languages says that if A is a context free lan-
guage, then there is a non-negative integer n such that any string � 2 A whose length
is greater than n can be written � = uvwxy in such a way that

7By the cycle of a real number q, I mean the smallest positive integer, p such that pq is an integer.
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Table 7: A context free grammar for generating lnr[[1:2n]].

S ! l Ss r
2

S ! l2 Ss r
3

S ! l3 Ss r
4

S ! l4 Ss r
5

S ! l5 Ss r
6

Ss ! �
Ss ! l5 Ss r

6

(i) j vx j� 1

(ii) j vwx j� n

(iii) for all i � 0, uviwxiy is in A.

Suppose A satis�es the Pumping Lemma for n > n0. Consider a string uvwxy which can
be pumped in accord with condition (iii). Clearly, v must consist of a positive number
of l's and x must consist of a positive number of r's. Let j v j= cl and j x j= cr. Without
loss of generality, we can assume that v is rightmost in the string of initial l's so j w j= 0.
Let j u j= dl and j y j= dr. Then, by the de�nition of A we can write

cri+ dr = [[q(cli+ dl)]] (13)

For each i 2 N , let �i be the fractional part of q(cli+ dl). Then, by (13), we can write

q =
cr(i + 1) + dr + �i+1 � (cri+ dr + �i)

cl(i+ 1) + dl � (cli+ dl)
=

cr + �i+1 � �i
cl

(14)

But unless �i+1 = �i for all i, equation (13) is false for su�ciently large i. Therefore,

q =
cr
cl

(15)

Since cr and cl are integers, q is rational. 2

These examples show that even one of the simplest parameterized dynamical au-
tomata can emulate computing devices with a signi�cant range of complexities. The
framework also suggests an interesting new way of examining the relationships between
formal languages: we can look at their locations in the parameter space of the dynamical
automaton. Figure 7 shows how the simplest (two-rule) context-free languages among
anb[[�n logmR mL]] are distributed in the �rst quadrant of < mR �mL >. By adopting a
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Figure 7: The bands in the space mL �mR where the simplest (two-rule) context free
languages reside. (Example 4.2).
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natural metric on this space (e.g. Euclidean distance), we can talk about relationships
between languages in terms of distance. On this view, each two-rule language is sur-
rounded by more complex languages (both in the rule-counting sense and the Chomsky
hierarchy sense). Although the grammars of the languages near each two-rule language
are substantially di�erent from its grammar in possessing large numbers of rules or re-
quiring context-sensitive rules, their distributional properties are rather similar. For
example, the language lnr[[1:01n]] di�ers from lnrn only in very long strings. If we assume
that unbiased probabilities are associated with those rows in the Input Mapping of the
dynamical automaton which specify transitions out of the same compartment, then the
strings on which these two languages di�er are quite rare. In Section 5, I speculate how
this property may be useful in designing learning algorithms for dynamical automata.

5. Conclusions.

5.1 Review

I have examined a particular type of computing device, the dynamical automaton, whose
variables and parameters take on real values. In contrast to other work on real-valued
automata which focuses on complexity and tractability issues, I have emphasized the
interpretation of real-valued spaces as metric spaces and examined consequences for our
understanding of how computing devices are related to one another. First, I identi�ed a
class of computing devices called pushdown dynamical automata whose computation is
organized around fractals, and showed that this class corresponded to the class of context
free grammars. I illustrated a simple method of implementing dynamical automata in
neural networks. Then I examined a simple dynamical automaton with real-valued
parameters and showed how this automaton behaved like various pushdown automata
under some parameter settings and like more powerful automata under other settings.
Moreover, the di�erent automata were organized in the metric space of the computer's
parameters in such a way that nearby automata in the parameter space generated similar
sets of strings (in a probabilistic sense). The context free grammars with the fewest rules
occupied disconnected regions of the parameter space. In between these were grammars
with more rules, including many non-context-free grammars.

5.1 Comparison with Moore's method

Moore (to appear), studying closely related dynamical recognizers, shows that some dy-
namical recognizer with piecewise linear transition and decision functions can recognize
any context free language. His result is quite similar to the second half of my Theorem
2 but the two approaches both have strengths and weaknesses so it is useful to compare
them.
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Recall that a dynamical recognizer is like a dynamical automaton except that in a
dynamical recognizer the choice of function applied when a given symbol appears is not
contingent on the current state and acceptance or rejection is only evaluated when the
last symbol of a string has been processed.

Moore uses the following functions to construct a dynamical recognizer for any
context free grammar:

Name Function

pushi �x + (1� �) i
m

popi
1
�

�
x� (1� �) i

m

�
= push�1

i (x)

Here, 1 � i � m and 0 < � � 1
3m+1

. These 2m functions, which form a GIFS on R,
can be used to simulate a pushdown stack with m symbols. The functions "pushi" and
"popi" correspond to "push symbol i onto the stack" and "pop symbol i o� of the stack"
respectively. It can be shown that pushdown automata generate the same languages as
the subset of them in which there are no control state changes (Hopcroft and Ullman,
1979). Thus all context free languages can be generated by a device which consists
simply of a pushdown stack. Therefore, by composing pushi's and popi's appropriately,
Moore's functions can be used to build a mechanism for generating any context-free
language.

There are two technical details that need to be looked after. First, how can Moore's
recognizer detect an illegal pop, i.e., a move of the form popj� pushi where i 6= j?
Second, what guarantees that each sequence of pushes and pops is uniquely associated
with a point in R? Moore answers the �rst question but does not address the second.
Conveniently, Theorem 1 can be applied to address the second.

Regarding the �rst question (illegal pops), Moore's mechanism is cleverly designed
to allow easy detection of illegal pops: any move or partial move of the illegal form popj�
pushi makes j x j � 2 but all legal moves and partial moves keep j x j � 1. In order to
allow his device to record the information about whether j x j ever exceeded 2 so that
it is available when the string as a whole has been processed, Moore introduces a new
variable, y with initial value 0 and updates y according to

y  f(x; y) = max(j x j; j y j)

Requiring, that y 2 [0; 1] at the end of processing a string ensures that all moves have
performed pushdown stack operations.8 For comparison, note that a pushdown dynam-
ical automaton ensures that pop moves always undo push moves by choosing a partition

8The fact that pushi, popi and f are all at least piecewise linear in x and y forms the basis of Moore's
claim that a dynamical recognizer with all piecewise linear operations can recognize any context free
language.



42

in which the current compartment is always uniquely associated with the most recent
push move and allowing only the corresponding pop move out of that compartment.

The second question, What guarantees that each sequence of pushes and pops is
uniquely associated with a point in R?, can be addressed by choosing an appropriate
starting value, using Theorem 1 above as a guide. In fact, not all starting values will
work. Consider the case m = 3 and � = 1=10. If the starting value is x0 = 1, then it
is easy to check that the stack states "�", "3", "33", "333", etc. all generate the same
dynamical recognizer state, namely x = 1. This means the device will fail to distinguish
these stack states from each other. To avoid this problem, it su�ces to note that [0, 1]
is a pooling set for the GIFS of popi's and pushi's and the set [0, 3/10) [ (4/10, 6/10)
[ (7/10, 9/10) is its crest. Thus any x0 in this set will give rise to unique locations for
all stack states.

5.2 Avenues worth exploring

Several interesting questions are raised by the results described here.

Fleshing-out of Chomsky Hierarchy Relationships. The current proposal to or-
ganize languages in a metric space seems, at �rst glance, to di�er substantially from
standard complexity-based approaches. However, a close look at the example of Section
4 suggests that the relationship between the current results and the complexity-based
results may be one of augmentation rather than revision. In particular, the overarching
contrast between context free languages and non-context-free languages is preserved in
this metric space example as a contrast between machines with a rational versus an
irrational parameter. Two further questions are also worth exploring: (i) Is there a
natural way, in the dynamical automaton framework, of de�ning precisely the recur-
sively enumerable languages, or of de�ning a set of recursively enumerable languages
which contains a set of context free languages as a proper subset? (ii) Do all dynami-
cal automata map standard complexity classes onto independently motivated parameter
classes?

Approximations of In�nite Machines. Just as the irrational numbers can be viewed
as the limits of in�nite series of rationals, so the non context-free devices in the model
of Section 4 can be viewed as limits of in�nite series of context-free devices. A similar
idea has been explored by Crutch�eld and Young (1990) and Crutch�eld (1994). These
authors analyze a particular indexed context free grammar as the limit of an in�nite
series of increasingly complex �nite-state devices. They project from their results an
approach to signal analysis in which one studies the growth in size of successive machine
approximations at one level on the Chomsky Hierarchy in order to �nd out if a jump to
a machine at a higher level is warranted. However, they only explore the case in which
bigger and bigger �nite state devices approximate a context free device. The current
results may thus be useful in extending their method to transitions between higher levels.



43

Finding all CFLs. The cascade-based analysis makes it possible to identify certain
dynamical automata in a parameterized dynamical automaton family which generate
context free languages. However, it doesn't necessarily characterize all context free
language generators in a particular family. A case in point is the generator described in
Section 4: only the simplest two-rule grammars follow a single cascade throughout their
computations. It would be desirable to generalize the analysis so that one could identify
the entire set of context-free language generators in a given dynamical computing system.

Universality. I have been promoting parameterized dynamical automata as a better
way of organizing formal languages than various systems stemming from the Chomsky
hierarchy. There is one sense in which the Chomsky hierarchy is more appealing as
an organizational tool: it is nearly machine-independent, and thus very universal. The
dynamical automaton spaces I de�ne depend on the particular parameterized automaton
under study, and do not provide a way of organizing all languages that can be generated
using a �nite alphabet. Nevertheless, it is interesting to consider the possibility that
there might be a privileged set of functions which serves as the basis for a general
automaton space to which all dynamical automata can be related. Such a framework
might be useful for studying processes which involve incremental search over a very wide
range of devices|e.g., evolution, signal identi�cation.

Neural Networks. Certain kinds of neural networks are real-valued computers.
As computing mechanisms, neural networks are interesting because they are closely
associated with general theories of learning, and because they are sensitive to statistical
properties of their environment and thus can operate well even in a noisy world. Despite
their appealing properties, however, it is hard to get neural networks to learn complex
functions like those above the �nite state level on the Chomsky hierarchy. Although we
know how to program neural networks to implement Turing machines as well as other,
less powerful symbolic devices (e.g., Siegelmann and Sonntag, 1991; Kremer, 1996),
the implementations have not particularly taken advantage of the special strengths of
neural representations. Instead they have largely been remakes of computers we already
know how to build using standard machinery. The current work o�ers a new line on
this problem. As shown in Section 3, dynamical automata are easily implemented in
certain kind of recurrent neural networks. Because the implementation is based on the
metric structure of the representation space and metric relationships are fundamental
to neural network learning and statistical sensitivity, the proposed representation may
be an especially useful one for improving the performance of learning networks on hard
symbolic problems. I develop this point more in the next paragraph.

Learning. A natural approach to language learning is to think of it as a process of
making small adjustments in a grammar in order to improve predictive accuracy. This
approach requires us to de�ne what constitutes a \small adjustment", i.e., to de�ne
similarity among grammars. Using standard symbolic formalisms, it is hard to choose
among the myriad ways one might go about de�ning similarity among grammars, espe-
cially if the grammars are in�nite-state devices. We can examine the number of rules
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that two grammars have in common. But then the rules that are not shared between
the two grammars can have so many forms that it is hard to know how to take them
into account. We can assign probabilities to rules and compare the implications for
local symbol transition likelihoods. But it is hard to know how to compare between the
case in which a rule belongs to a grammar but occurs with very low probability and
the case in which the rule is simply absent from the grammar. The hypothesis spaces
de�ned by parameterized dynamical automata (as in the example described in Section
4) look promising in this regard. The automata are organized in a continuum in such
a way that nearby automata give rise to similar transition behaviors (in a probabilistic
sense, as mentioned at the end of Section 4). Thus it may be possible to use dynamical
automata as the basis for a gradient descent search without having to make an arbitrary
decision about rule cost. Instead of trying to postulate an arbitrary balance between
complexity of a grammar and coverage of the data, the learning algorithm can simply
search the space for the best-�t automaton.

Language Typology. The metric organization of dynamical automata in their pa-
rameter spaces places quite di�erent machines next to each other. The analysis in
Section 4 shows that, for a simple parameterized Dynamical Automaton, the computa-
tional class of a speci�c parameterization depends upon the rationality of one parameter:
rational values yield context free languages; irrational values yield non-context-free lan-
guages. Since rational and irrational numbers can be arbitrarily close to one another, the
Chomsky Hierarchy status of this dynamical automaton 
uctuates dramatically as this
parameter value is adjusted. As a cognitive model, such an organization system works
against the notion that Chomsky hierarchy complexity makes essential distinctions be-
tween languages, but it may lead to a more useful way of accounting for the appearance
of a mixture of context-free and context-sensitive patterns among the world's languages
(e.g., Shieber, 1985).

5.3 Comment on relevance

Grammars and metric spaces seem like strange bedfellows. But the switch in focus from
classi�cation (complexity hierarchies) to location (metric space organization) may make
working with grammars more practical by allowing us to deal with approximations and
to get a handle on learning. Moreover, if we focus on grammatical representation in
real-valued machines we can understand the mechanisms of their computations better
than if we focus on their computational power alone.
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