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Abstract:  Connectionist network learning of context free languages has so far been
applied only to very simple cases and has often made use of an external stack.  Learning
complex context free languages with a homogeneous neural mechanism looks like a much
harder problem.  The current paper takes a step toward solving this problem by analyzing
context free grammar computation (without addressing learning) in a class of analog
computers called Dynamical Automata, which are naturally implemented in connectionist
networks.  The result is a widely applicable method of using fractal sets to organize infinite
state computations in a bounded state space.  An appealing consquence is the development
of parameter-space maps, which locate various complex computers in spatial relationships
to one another. An example suggests that such a global perspective on the organization of
the parameter space may be helpful for solving the hard problem of getting connectionist
networks to learn complex grammars from examples.



2

1. Introduction

Smolensky (1990) argues that connectionist (or "neural'') networks offer an opportunity to
overcome the brittleness of symbolic devices without foregoing their powerful
computational capabilities.  "Brittleness'' refers to the fact that many symbolic devices are
catastrophically sensitive to small distortions in their encoding---a bit or a semicolon out of
place can bring an entire system to its knees.  Such sensitivity is reminiscent of the
trademark behavior of "chaotic'' dynamical processes: small differences in initial conditions
give rise to substantial differences in long-term behavior.  It would be ironic, then, if the
interpretation of connectionist devices as dynamical systems with potentially
chaotic behaviors led to a realization of Smolensky's ideal. Intriguingly, this is the character
of a number of recent results connecting symbolic computation with multi-stable dynamical
systems (Barnsley, 1993[1988]; Pollack, 1991; Moore, 1998; Blair and Pollack, in press;
Tino and Dorffner, 1998; Tino, 1999). Fractal objects, which turn up as the traces of
chaotic processes, turn out to be especially useful for instantiating powerful computing
devices in metric space computers which exhibit graceful modification under small
distortions.  It is as though by embracing the caprice of a chaotic process, a computational
system can stay in its good graces and make effective use of its complexity (cf. Crutchfield
and Young, 1990; Crutchfield, 1994).   Previous work has focused on how to instantiate
complex symbolic computers in metric space computers like connectionist networks.  The
current work suggests that the most useful contribution of the metric space perspective is
the revelation of geometric relationships among familiar, effective symbolic devices.   It
becomes possible to see, from a global, topological perspective how one symbolic
computer can be gradually transformed into another one.

Recently, fractals have been used to organize computation in several dynamical systems
for symbol processing (Jeffrey, 1990).   Tino (1999) has shown that when points on such
fractals are associated with probabilities, then fractal dimension is, in a useful sense, the
geometric analog of entropy. Tino and Dorffner (1998) have applied the results to
connectionist networks learning unknown time series and found that using the fractal
structure to set the recurrent weights leads to an improvement over Simple Recurrent
Network (SRN; Elman, 1991) and variable memory Markov model approaches (e.g., Ron,
Singer, and Tishby, 1996).  The current work complements these results by analyzing
connectionist representations of specific infinite-state languages.

A number of researchers have studied the induction of context free grammars (CFGs)
by connectionist networks.  Many have used an external stack (Giles, Sun, Chen, Lee, and
Chen; 1990;  Sun, Chen, Giles, Lee, and Chen, 1990; Das, Giles, and Sun, 1993; Mozer and
Das, 1993; Zheng, Goodman, and Smyth, 1994). Some have used more standard
architectures (Wiles and Elman, 1995;  Rodriguez, Wiles, and Elman, 1999).  In all cases,
only very simple context free languages have been learned.  It is desirable to be able to
handle more complex languages. It is also desirable to avoid an external stack: such a stack
makes it harder to see the relationship between CFG nets and other more homogeneous
connectionist architectures and it absolves the network from responsibility for the
challenging part of the task---keeping track of an unbounded memory---thus making its
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accomplishment fairly similar to another well-studied case, the learning of finite state
languages (e.g., Servan-Schreiber, Cleeremans, and McClelland, 1991; Zheng, 1994;
Casey, 1996).

This paper takes a step toward addressing these shortcomings by providing a
representational analysis of neurally inspired devices called Dynamical Automata or DAs
which can recognize all context free languages as well as many other languages. The
approach is less ambitious than the models just cited in that learning is not attempted.  On
the other hand, it is more ambitious in that a representational analysis of the structural
principles governing the DAs', and corresponding networks', computations is formally
worked out for all context free languages.  The essential principle, consistent with the
experiments of Pollack (1991) the analysis of Moore (1998) is that fractal sets provide a
method of organizing recursive computations in a bounded state space.   The networks are
recurrent, use linear and threshold activation functions and gating units, and may have
stochastic units, but have no external stack.  The representations used in DAs resemble the
representations developed by Elman's Simple Recurrent Network when it is trained on
syntax tasks (Elman, 1991) and which has been widely used in cognitive modeling, thus
suggesting a set of principles that may be useful in building cognitively plausible neural
models of syntax.

1.1. Overview

In Section 2 of this paper, I review previous studies that have used fractal sets to
organize complex computation by connectionist devices.

Section 3 investigates a subclass of Dynamical Automata called Pushdown Dynamical
Automata (PDDAs).  These DAs emulate Pushdown Automata (PDAs) and are closely
related to a type of "Dynamical Recognizer" that Moore (1998) proposed for recognizing
Context Free Languages (CFLs).   While Moore's case is one-dimensional, I describe a
higher dimensional species which is naturally implemented in high-dimensional
connectionist networks.  Section 2 also contains a lemma that helps one choose appropriate
initial conditions for Dynamical Automata (and Dynamical Recognizers) that process
context-free languages.

Section 4 makes explicit how to go about encoding PDDAs and other Dynamical Automata
in connectionist networks.

Section 5 focuses on the appealing consequence of performing complex computations in a
metric space that I noted above:  the metric provides a way of mapping out spatial
relationships between machines with different computational properties.  The examples of
Section 5 suggest that such maps may be useful in addressing the difficult problem of
learning complex grammars from data.

2. Examples of Fractal Computers
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2.1. Example:  Pollack (1991)

Pollack (1991) noted that a very simple artificial neural device could recognize the Dyck
Language---the language in which left parentheses always precede corresponding right
parentheses.  He describes a machine along the lines of that shown in Figure 1.

-------------Insert Figure 1 about here-------------

Initially, the activation of unit z is 1.  If a left parenthesis is presented, the network activates
unit L which has the effect of allowing transmission of activation along the connection
labeled wL = 1/2. Similarly, if a right parenthesis is presented, the network
activates unit R which allows transmission of activation along the connection labeled wR =
2.  With each presentation of a symbol, z updates according to the rule z(t+1) =
f ( )∑

i
iiaw  = f(wLº z(t) + wRºz(t))  =  either f(wLº z(t)) or f(wRºz(t)).  The activation

function f(x) is equal to x for x ∈  (0, 2] and equal to 2 for x > 2. Unit P is a threshold
unit that becomes active if z > 0.75.  Unit Q is a self-reinforcing threshold unit that is
initially inactive but becomes active and stays active if z ever exceeds 1.5.  Unit A is
a threshold unit that computes P AND ~Q.  Note that unit A becomes activated at the end of
any string in which right parentheses follow and match left parentheses.

During the processing of grammatical strings, the activations of the z unit lie on the
geometric series fractal, {1/2n: n ∈  N}.  In essence, this unit is a counter that keeps track of
how many right parentheses are required to complete the string at any point.  Although one
could also use the set of non-negative integers, N, to perform the same function, the use of
the bounded fractal permits the connectionist device to work with units of bounded
activation. This simple example thus provides an indication of how fractal objects are
useful in forming neural recognizers for infinite-state languages.

2.2.  Example:  Rodriguez, Wiles, and Elman (1999)

Wiles and Elman (1995) study a backpropagation network that is trained on samples from
the closely-related language, lnrn, n ∈  {1,2,3...}.  The model is presented with a sequence
from (lnrn)* where n is randomly chosen from {1,..., 11} at each iteration.  The task of the
model is to predict successor symbols at each point.   After many training episodes with
different initial weight settings, Wiles and Elman found one network that generalized the
pattern up to n = 18 (i.e. it performed as though it were recognizing lnrn for n ∈  {1,...,18}).

Rodriguez et al. (1999) noted that networks like Wiles and Elman's can be viewed as
nonlinear dynamical systems.  They analyzed the corresponding linear systems which
closely approximated the behavior of the nonlinear systems and found that the computation
of lnrn was organized around a saddle point in two dimensions:1 when the network was
                                               
1 See Perko (1991).  A visualizable example is a system whose states consists of the positions of a water drop
on mountainous terrain.  Gravity pulls the water drop downhill at all times.  A saddlepoint in this system is a
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receiving a string of l's, it was iterating the map associated with the stable manifold of the
saddle point---in effect it was computing successive values of x(t) = x0 e-kt for x0 the initial
state, some positive k, and t = 0, 1, 2, 3,....  When it was receiving the corresponding string
of r's it was iterating the map associated with the unstable manifold (same situation except
k < 0 and the points are spread out along a different axis).  With equally spaced values of t,
the exponential equation x(t) = x0 e-kt generates points on a geometric series fractal.  Thus
again, a parenthesis balancer is using geometric series fractals for its computation, this time
along two different dimensions (the distinction between dimensions is a handy way of
distinguishing the l and r states).

These two examples have shown how a particular type of fractal is useful for modeling
parenthesis-balancing languages.  This is helpful, but it is a very simple case.  The next two
examples describe more complex cases.

2.3. Example: Moore (1998)

Moore (1998) proposes Dynamical Recognizers, which compute on a metric space, X, by
invoking a distinct map fi: X →  X for each symbol i.  The Recognizer must be at a
specified point in X when it starts reading a string.  If it lands in a specified final region
after processing each symbol of the string, then the string is deemed part of its language.

Moore uses Cantor sets (e.g., Strogatz, 1994) to construct recognizers on the one-
dimensional metric space, ℜ , for any context free language:

-------------Insert Table 1 about here-------------

Here, 1 ≤ i ≤ m and 0 < α  ≤ 1/(3m + 1), where m is the number of symbols in the stack
alphabet.  The initial state (x0) is 1/2.   The final region is (0, 1).  These 2m functions can be
used to simulate a pushdown stack with m symbols.  The functions "pushi" and "popi"
correspond to "push symbol i onto the stack" and "pop symbol i off of the stack"
respectively.  It can be shown that pushdown automata generate the same languages as the
subset of them in which there are no control state changes (Hopcroft and Ullman, 1979).
Thus all context free languages can be generated by a device that consists simply of a
pushdown stack and its control rules. Therefore, by composing pushi's and popi's
appropriately, Moore's functions can be used to build a mechanism for generating any
context-free language.

There are two technical details that need to be looked after.  First, how can Moore's
recognizer detect an illegal pop, i.e., a move of the form popj ° pushi where i ≠  j?  Second,
what guarantees that each sequence of pushes and pops is uniquely associated with a point
in ℜ ?

                                                                                                                                              
pass separating two peaks and two valleys.   The stable manifold of such a saddlepoint is the ridgeline
between the two peaks.



6

Regarding the first question (illegal pops), Moore's mechanism is cleverly designed to
allow easy detection of illegal pops: any move or partial move of the illegal form popj °
pushi makes x ≥  2 but all legal moves keep x ≤ 1.  In order to allow his device to record
the information about whether x  ever exceeded 2 so that it is available when the string as
a whole has been processed, Moore introduces a new variable, y, with initial value 0 and
updates y according to

y ←  f(x, y) = max(x , y )

Requiring that y ∈  [0, 1] at the end of processing a string ensures that all moves have
performed pushdown stack operations.2

Regarding the second question (uniqueness), choosing x0 = 1/2 ensures that each stack state
(i.e. each sequence of symbols on the stack of a PDA) places the Dynamical Recognizer at
a unique point in ℜ .   But this is not obvious. Consider the case m = 3 and α  = 1/10.  If the
starting value is x0 = 1, then the stack states ε , "3", "33", "333", etc. all generate the same
Dynamical Recognizer state, namely x = 1.  This means the device will fail to distinguish
these stack states from each other.  I describe an easily assessed condition below (Section
3) that guarantees uniqueness.

To implement complex grammar computation in connectionist networks, it is desirable
to use many dimensions.   The use of many initially random-valued hidden unit dimensions
is crucial to the way gradient descent learning mechanisms like backpropagation solve the
symmetry-breaking problem (Rumelhart, Hinton, & Williams, 1986).   Moreover, although
in any bounded metric encoding of an infinite-state language, the required precision grows
exponentially with level of embedding, required precision also grows with the cardinality
of the stack alphabet in a one-dimensional recognizer (note Moore's α  ≤ 1/(3m + 1)); use of
multiple dimensions can eliminate this growth (see Section 3 below).  Also, distributed
representations, which have many advantages (analogy, robustness in noise, content-
addressability), require multiple dimensions;  for learning distributed representations and
stack memory with a single learning mechanism, it is desirable to express them both in a
similar encoding.  The next example illustrates the Dynamical Automaton method of
extending Moore's technique to many dimensions.

2.4. Example:  Sierpinski Triangle

Figure 2 shows a diagram of the fractal called the Sierpinski Triangle (the letter labels
in the diagram will be explained presently). The Sierpinski triangle, a kind of  Cantor set, is
the limit of the process of successively removing the "middle quarter'' of a triangle to
produce three new triangles.

                                               
2 The fact that pushi, popi and f are all at least piecewise linear in x and y forms the basis of
Moore's claim that a dynamical recognizer with all piecewise linear operations can
recognize any context free language.
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-------------Insert Table 2 about here-------------

The grammar shown in Table 2 is a context free grammar. This grammar generates
strings in the standard manner (Hopcroft and Ullman, 1979; ε  denotes the empty string).
Examples of strings generated by Grammar 1 are "a b c d'', "a b c d a b c d'', "a b c a a b c d
b c d d''. The last case illustrates center-embedding.  A pushdown automaton for the
language of Grammar 1 would need to keep track of each "abcd'' string that has been started
but not completed.  For this purpose it could store a symbol corresponding to the last letter
of any partially completed string on a pushdown stack.  For example, if it stored the symbol
"A'' whenever an embedding occurred under "a'', "B'' for an embedding under "b'' and "C''
for an embedding under "c'', the stack states would be members of {A, B, C}*. We can use
the Sierpinski Triangle to keep track of the stack states for Grammar 1.  Consider the
labeled triangle in Figure 2.  Note that all the labels are at the midpoints of hypotenuses of
subtriangles (e.g., the label "CB'' corresponds to the point, (1/8, 5/8)).  The labeling scheme
is organized so that each member of {A, B, C}* is the label of some midpoint (only stacks
of cardinality ≤ 3 are shown).

-------------Insert Figure 2 about here-------------

We define a Dynamical Automaton (DA 1), which recognizes the language of Grammar
1, by the Input Map shown in Table 3. The essence of the DA is a two-element vector, z,
corresponding to a position on the Sierpinski triangle.  The DA functions as follows: when
z is in the subset of the plane specified in the "Compartment'' column, the possible inputs
are those shown in the "Input'' column.  Given a compartment and a legal input for that
compartment, the change in z that results from reading the input is shown in the "State

Change'' column. If we specify that the DA must start with z  = 





2/1
2/1

 make state changes

according to the rules in Table 3 as symbols are read from an input string, and return to z =







2/1
2/1

  (the Final Region) when the last symbol is read, then the computer functions as a

recognizer for the language of Grammar 1.  To see this intuitively, note that any
subsequence of the form "a b c d'' invokes the identity map on z.  Thus DA 1 is equivalent
to the nested finite-state machine version of Grammar 1.  For illustration, the trajectory
corresponding to the string "a b c a a b c d b c d d'' is shown in Figure  3.  (1. a is the
position after the first symbol, an "a", has been processed; 2. b is the position after the
second symbol, a "b" has been processed, etc.)

-------------Insert Table 3 about here-------------

-------------Insert Figure 3 about here-------------
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As the foregoing example has illustrated, a Dynamical Automaton is like a Dynamical
Recognizer except that a partition restricts the function applications.  A given symbol can
give rise to a given function application only if the automaton is in an appropriate
compartment of the partition.  This assumption has the consequence that the
ungrammaticality of a string is always detected on-line in a Dynamical Automaton but may
not be detected until the final symbol has been processed in a Dynamical Recognizer.  In
this sense, Dynamical Automata are more closely related to on-line connectionist
recognizers like the Simple Recurrent Networks (SRNs) of (Elman, 1990, 1991).

In fact, from a representational standpoint as well, the computations of this Dynamical
Automaton bear a close resemblance to the empirically observed computations of SRNs.
Elman (1991) examined the many-dimensional hidden unit space of an SRN trained on
more elaborate recursive languages and found that different lexical classes corresponded to
different subregions of the space.  Likewise, in the example above, the three lexical classes,
A, B, and C correspond to three distinct regions of the representation space (each class has
only one member).3 Elman also noted that the SRN followed similarly-shaped trajectories
from region to region whenever it was processing a phrase of a particular type, with slight
displacements differentiating successive levels of embedding.  Here, the single phrase S is
also associated with a characteristic (triangular) trajectory wherever it occurs and slight
displacements also differentiate successive levels of embedding.

One can construct a wide variety of computing devices that organize their computations
around fractals.  At the heart of each fractal computer is a set of iterating functions  that
have associated stable states and can be analyzed using the tools of dynamical systems
theory (Barnsley, 1993[1988]).  Hence the name, Dynamical Automaton.

3. The general case

The method of Example 2.4 can be extended to all context free languages. I sketch the
proof here. The details are provided in the Appendix.

First, the formal definition of a dynamical automaton:

Def. 1. A dynamical automaton is a device, M, with the following structure:

M = (X, F, P, Σ , IM, x0, FR)

(1) The space, X, is a complete metric space.

(2) The function list, F, consists of a finite number of functions, f1, ... fK where wi: X
→  X for each i ∈  {1, ..., K}.

  
                                               
3 The item "d" does not need a class of its own because its occurrence always puts the
computer into a state corresponding to one of the other three classes.
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(3) The partition, P, is a finite partition of X and consists of compartments, m1, ...
mK.

(4) The input list is a finite set of symbols drawn from an alphabet, Σ .

(5) The input mapping is a three-place relation, IM: P ×  Σ  ×  F →  {0, 1} that
specifies for each compartment, m, and each input symbol, s, what function(s)
can be performed if symbol s is presented when the system state is in
compartment m.  If IM(m, s, f) = 0 for all f ∈  F then symbol s cannot be
presented when the system is in compartment m.

(6) The machine always starts at the start state, x0 ∈ X.  If, as successive symbols
from an input string are presented, it makes transitions consistent with the Input
Mapping, and arrives in the final region, FR, then the input string is accepted.

Next, we can define a special class of Dynamical Automata that behave like Pushdown
Automata.  An easy way to do this is to design dynamical automata that travel around on
fractals with several "branches" (the branches of the Sierpinski triangle are its three largest
subtriangles).  If we define the automata in such a way that (i) the branches can be isolated
from one another with linear separators, (ii) each branch corresponds to a stack symbol, and
(iii) the top of the stack is always the symbol corresponding to the current branch, then
implementation in a connectionist network is facilitated:  the network can have a layer of
units encoding the position on the fractal;  a separate layer of threshold units identifies the
top of the stack by determining which branch of the fractal the system is on (see Section 4).

For separation to be possible, the branches must not overlap.  The following constructs
are useful in this regard.

Def. 2. A generalized iterated function system (GIFS) on a metric space X is a set of
functions S = {X: w1, ..., wN} that map X into itself.4  The system is uniquely invertible if
each wi is uniquely invertible on X.

Def. 3.  Let  S = {X: w1, ..., wN} be a GIFS on metric space X.   Let σ = σ1σ2...σK be a
string in {1, ..., N}*.  Consider the point x = wσ(x0) =  )...))x(w(...w(w 021 Kσσσ  ∈  X.  The

string σ is called an x0-address of the point x under S.  The set of points in X that can be
reached from initial state x0 by finite sequences of applications of functions from F is called
the trajectory of x0.

Def. 4.  Let x0 be a point in X.  If every point in the trajectory of x0 has a unique x0-address,
then x0 is called a cascade point.  In this case, the trajectory, C, of x0 is called the cascade
                                               
4 Barnsley defines an Iterated Function System (IFS) on metric space X as a finite set of
contraction maps on X.  A GIFS is "generalized" in the sense that the mappings need not be
contraction maps--see example 3.2 below.



10

of x0. If x ∈  C and x ≠  x0 then the first symbol of the x0-address of x is denoted topC(x).  If
x = x0, we set topC(x) =ε , where ε  denotes the empty string.

Thus each point on a cascade can be mapped to a unique stack state.  To make use of this
construct, it is necessary to be able to identify cascade points.  The following definition and
lemma help in this regard:

Def. 5.  Let S = {X; w1,..., wN} be a GIFS on metric space X.  A set O ⊂  X is called a
pooling set of S if it satisfies the following:

(i) wi(O) ∩  wj(O) = ∅  for i, j ∈  {1, ..., N} and i ≠  j.

(ii) U
N

i 1=
wi(O) ⊂  O

where w(O) means {w(x): x ∈  O}. The set of points in O that are not in U
N

i 1=
 wi(O) is called

the crest of O.

Lemma 1. Let S = {X; w1,..., wN} be a uniquely invertible GIFS on metric space X.
Suppose O ⊆  S is a pooling set of S and x0 is in the crest of O.  Then x0 is a cascade point
of S.

Proof:  See Appendix.

The Lemma makes it easy to identify cascade points of GIFS's.

For example, to establish uniqueness of stack states for the specific example of Moore's
context free language recognizer with m = 3 and α  = 1/10 (Example 2.3 above), it suffices
to note that that [0, 1] is a pooling set for the GIFS of popi's and pushi's and the set [0, 3/10)
∪  (4/10, 6/10) ∪  (7/10, 9/10) is its crest.  Thus any x0 in this set (Moore used x0 = 1/2) will
give rise to a unique mapping for all stack states.

For example, extending and slightly simplifying Example 2.4, if we have a stack alphabet
of N symbols, we let x0 = 1/2 ∈  ℜ n (i.e. the vector in ℜ n with every element equal to 1/2).
The function list can then be defined as

S = { wn(x) = 1/2 x + 1/2 en:  n ∈ {1,... , N}}

where en  is the vector in ℜ n with n'th element equal to 1 and all other elements equal to 0.
To see that x0 is a cascade point for this function list, let O be the open unit hypercube in
the positive quadrant of  ℜ n  with a corner at the origin. For all x ∈  O, the n'th coordinate of
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wn(x) is in the interval (1/2, 1) and the m'th coordinate of wn(x) is in (0, 1/2) for m ≠  n, m, n
≤ N.  Therefore, each wn(O) ⊂  O, and wn(O) ∩  wm(O) = ∅ .  Moreover, x0 ∉  wn(O) for each
n.  Thus O is a pooling set for the function system F and, by the Lemma, x0 is a cascade
point.

Thus points on the trajectory of x0 correspond one-to-one to stack states on the alphabet Σ  =
{1,... , N}. The current position on the fractal (call it x) corresponds the current state of the
stack. One can thus define analogs of  push and pop moves.  In particular, the analog of
pushing symbol n is to change the state of the automaton from x to wn(x).  The analog of
popping symbol n can only legally be performed when the current branch of the fractal is n
(this condition can be enforced in the Input Map) and it consists of changing the state from
x to wn

-1(x).

One can thus define a special class of Dynamical Automata called Pushdown Dynamical
Automata (PDDAs) which move around on a cascade by making analogs of push and pop
moves.

The central claim can thus be stated:

Theorem 1.  The set of languages recognized by Pushdown Dynamical Automata (PDDAs)
is the same as the set of languages recognized by Pushdown Automata (PDAs).

Proof:  See Appendix.

Because the PDDAs described above invoke an extra dimension of representation for every
stack symbol, they do not exhibit any growth in required precision as the cardinality of the
stack alphabet increases (see discussion of Example 2.3 above). The remainder of this
section gives some examples which show how the results above make it easy to design
pushdown dynamical automata for various context free languages.

3.1. Example:  lnrn

A simple PDDA recognizes lnrn for n ∈  {1, 2, 3,...}.  Let

M = ( 









































+











1
1

,
0
1

,},,{,,
2

,
1

2
,,

]1,0[
]1,0[

2

1

2

1

2

12
1

IMrlP
x

x
x

x
x

x

Relevant parts of the partition, P, are shown in Table 4a.  The input mapping, IM is shown
in Table 4b.

-------------Insert Table 4 about here-------------
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In this case, to establish context free language status following the proof of  Theorem 1 in

the Appendix, we consider the GIFS, S = {ℜ 2; w1 = 





2

12
1

x
x }.  Note that x10 =  




0
1

 and

x20 = 




1
1

 are both cascade points and they have disjoint cascades (condition (i) of the

definition of a PDDA).  Let these cascades be called C1 and C2, respectively.  Note that the
partition compartment is 1 if the index of x is 1 and ε=)(top

1
xC .  It is 2 if the index of x is 1

and 1)(top
1

=xC .  It is 3 if the index of x is 2 and 1)(top
2

=xC .  It is 4 if the index of x is 2 and

ε=)(top
2

xC .  Thus the compartment is predictable from the conjunction of the index and the

value of top in every case (condition (ii)).  The function 





2
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x
x

  restricted to C1 is a push

function.  The function 

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x
 restricted to C2 is a pop function. The function 


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
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x
x

 is

equal to 

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
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o , i.e., it is the composition of a switch function from C1 to C2 and a

pop function on C2 (condition (iii)).  Since, moreover, the start and end points are the
cascade points of C1 and C2 respectively (condition (iv)), M satisfies the definition of a
PDDA.  Thus, M recognizes a context free language.

In the examples provided so far, the functions of the underlying GIFS's are contraction
maps.  One may well wonder if cascades only arise in standard iterated function systems (a
la Barnsley, 1993[1988]) in which all the functions are contraction maps.  The following
case is an interesting counterexample.

3.2. Example:  Crutchfield and Young (1990)
Consider the GIFS, S = {[0, 1]; w1, w2} where the functions are given by

w1 =  ( )x−+ 11
2
1

w2 =  ( )x−− 11
2
1

Since w1 maps the interval O = (0, 1) onto (1/2, 1) and w2 maps this interval onto (0, 1/2),
O is a pooling set of S.  Moreover, the point 1/2 is (in) the crest of O.  Thus S can be used
to record stack states over a two-symbol alphabet by using 1/2 as the start state of a PDDA.
However, w1 and w2 are not contraction map.  For example, w2(0.99) - w2(0.98) > 0.01.
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This example is interesting in part because w1 and w2 are the two inverses of the much
studied "logistic map'', f(x) = rx(1 - x) when r = 4.  The logistic map has attracted attention
because it is a relatively simple (one-dimensional) function with chaotic
trajectories (see Stogatz, 1994, for an introduction).  Crutchfield and Young (1990, 1994)
analyzed f as the generator for a string  σ = σ1 σ2 σ3... where σ i ∈  {0, 1} for all i by
considering f k(1/2) for k = 1, 2, 3,... and letting σk = 1 if f k (1/2) > 1/2 and 0 otherwise.
They found that when r = 3.57... (the so-called "onset of chaos''), the set of initial 2n-
character substrings of σ for n ∈  N constitutes an indexed context free language.  Here, I
have taken the opposite tack: inverting a closely-related map introduces an indeterminism
that allows us to distinguish histories and thus use the map to model arbitrary grammars
(one instance of the inverted logistic suffices for stack alphabets with only two symbols;
multiple instances can be used to accomodate more stack symbols).  Loosely, one can say
that while Crutchfield and Young have analyzed a chaotic map to assess the specific
character of its complexity, the present analysis yields a way of using the same map to
perform a general class of computations of a similarly complex sort.  Given Crutchfield and
Young's results, an interesting question is whether there is a canonical grammar associated
with each value of r for the inverse logistic map device just referred to.  It may be, for
example, that for some languages, the corresponding inverse logistic automaton is more
tolerant of imprecision in the identification of the final region than for others. I leave this as
a question for future research.

4. Implementation in a Connectionist Network

Dynamical Automata can be implemented in connectionist networks by using a
combination of signaling units and gating units, some of which may be stochastic.  By a
signaling unit, I mean the standard sort of unit which sends out a signal reflecting its
activation state to other units it is connected to.  By a gating unit, I mean a unit that serves
to block or allow transmission of a signal along a connection between two other units. By a
stochastic unit, I mean one which makes a weighted random choice about which of a finite
number of connections to transmit a signal through.  All units  compute a weighted sum of
their inputs and pass this through an activation function---either identity or a threshold (a
sigmoid can be used in place of both of these with some distortion of the computation due
to the nonlinearity).

The use of simple affine functions (z ←  qz + r) to define the state changes in a
Dynamical Automaton makes for a simple translation into a network with signaling and
gating units.  The coefficients q and r determine weights on connections.  The connections
corresponding to linear terms (e.g., q) are gated connections.  The connections
corresponding to constant terms (e.g., r) are standard connections.

-------------Insert Figure 4 about here-------------

-------------Insert Table 5 about here-------------
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A connectionist implementation of Grammar 1 is shown in Figure 4.  Table 5 specifies
the weight values and unit types. The network processes strings by representing successive
symbols as localist bit vectors on its input layer (the I units) and predicting possible
successor symbols on its output layer (the O units) (Elman, 1990).  The units z1 and z2 form
the core of the network.  Their values at each point in time specify the coordinates of the
current position on the Sierpinski triangle.  They have multiple connections going out of
and into them.  For example, z1 has three self-connecting loops, one through gate σ11, one
through gate σ12, and one through gate σ13.  These gates are enabling threshold gates in the
sense that if a gate is not activated, then no signal is transmitted along the corresponding
connection.  The units Ia, Ib, Ia,c, and Id are input units.  Ib, Ia,c, and Id have activation 1 when
the input symbol is b, c, or d, respectively.  When the input symbol is an a, then one or the
other of Ia and Ia,c takes on value 1 with positive probability (a stochastic neuron not shown
here implements this feature).  Each input unit interacts with the z units in two ways: it
opens one gate on the self-recurrent connections; and it transmits a weighted signal directly
to each z unit.  The z units take on activations equal to the weighted sum of their inputs.
Although this means that in principle, their activations could be unbounded, all of their
computations take place in the bounded region (0, 1) so perfect performance can be
approximated by using a quasi-linear (e.g. sigmoidal) activation function that is almost
linear in this region.  The p units are threshold units that serve to translate the z activations
into binary values.  The output units, Ob through Od are threshold units that respond to the p
units.  Unit Oa happens to need to be on all the time in this grammar so it has no inputs and
its threshold is below 0.  When an output unit is on, the letter or letters corresponding to it
are interpreted as possible next words.  A string is deemed grammatical if, at each step of
processing, the activated input unit is one of the predicted outputs from the previous step
and if the network arrives at the initial state z = (1/2, 1/2) when the last word is presented.

This network handles ambiguity in the same way that a pushdown automaton does: by
guessing.  In the example at hand, since "a'' is sometimes an ambiguous symbol, and the
guesses are evenly distributed, the network has an equal chance of guessing wrong and
right each time it encounters an ambiguous "a''.  Thus, we consider the language generated
by the network as the set of strings that it can deem grammatical, even though in a given
instance, it may judge any legal string "ungrammatical''.  Because context often determines
the proper interpretation of an ambiguous symbol (e.g. an "a'' occuring initially can only be
generated by rule 2b), it is possible to use additional neural machinery to constrain the
choice to the contextually appropriate one.  In this case, a connection from output unit Oa,c
to the stochastic neuron mentioned above can ensure that a random choice is made between
Ia and Ia,c is made when Oa,c is on and that Ia is activated alone when Oa,c is off.

Section 5.  Parameter space maps.

One of the main motivations for creating mechanisms for doing complex symbolic
computation in metric space computers is that it leads to natural metrics over the symbolic
computers themselves.  Such metrics may prove useful for understanding how to make
complex computers robust under noise, sensitive to statistical properties of an environment,
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and learnable from data.  In this section, I make some initial explorations into the new
perspective afforded on symbolic computers by the metric space implementation described
here.

When a dynamical automaton is configured as a pushdown dynamical automaton (PDDA),
its functions exhibit precise symmetries in the following sense: it is essential that pop
operations have the effect of undoing push operations exactly.  One might well wonder
what happens if one adopts a more physically realistic perspective and allows the push and
pop operations to be only approximate mirrors of one another.

The result can be loss of context-freeness.  But the loss is not catastrophic in this case.
Instead, the neighboring languages in parameter space take on what one might aptly call
"mild context sensitivity''.5

5.1. Example:  Parameterized parenthesis matching

A simple case illustrates.  Consider the following parameterized extension of the dynamical
automaton for the language lnrn which was discussed in Examples 2.2 and 3.1.

M = ( 















=
≥



























+









 ∞

1
1

,
0
1

,},,{,,,
1

,,
]1,0[

),0[

2

1

2

1

2

1

2

1

x
x

IMrlP
x

xm
x

xm
x

xm RRL

where parameters mL and mR > 0.  The relevant part of the partition, P, is shown in Table
6a.  The input map, IM, is shown in 6b.

-------------Insert Table 6 about here-------------

The scalars, mL ("Leftward move'') and mR ("Rightward move'') are parameters that can be
adjusted to change the language the DA recognizes.  Figure 5 illustrates the operation of
this dynamical automaton. When 0 < mL = mR

-1 < 1, M recognizes the language lnrn, n ∈  {1,
2, 3,...}.

-------------Insert Figure 5 about here-------------

We can analyze this automaton as follows.  It recognizes strings of the form lnrk, n ∈  {1, 2,
3,...} where k is the smallest integer satisfying

mL
n mR

k ≥ 1

                                               
5I thank Jordan Pollack for drawing my attention to this "precarious'' quality of context-free
dynamical recognizers, and thus motivating the investigation described in this
section.
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Since we are only considering cases where mL > 0,

mR
k ≥  mL

-n

k ≥   
Rmlog mL

-n

k = [[ -n 
Rmlog  mL ]]

where [[ x ]] denotes the smallest integer greater than or equal to x.

If mL is a negative integer power of mR, then the language of M can be described with a
particularly simple context-free grammar.  Example 5.1.1 illustrates.

Example 5.1.1.  Let mL = 1/4 and mR = 2.  Thus k = [[ -n log2 1/4 ]] = 2n.  The language is
thus lnr2n.  This language is generated by a context free grammar with only two rules (Table
7).

-------------Insert Table 7 about here-------------

If mL is a non-whole-number rational power of mR (or vice versa), then the resulting
language is still context free, but its grammar is more complicated.  Example 5.1.2
illustrates a case like this.

Example 5.1.2.  Let, mL = 1/4 and mR = 45/6 ≈ 3.174802.  Thus k = [[ 1.2n ]].  The
language recognized by this particular parameterization of M is thus A = lnr[[ 1.2n ]].  This
language is substantially more complicated than the language of the previous example.  It
requires seven rules in context free grammar format (Table 8). The number of rules grows
with the length of the cycle of the coefficient of n.6

-------------Insert Table 8 about here-------------

If mL is an irrational power of mR or vice-versa, then M generates a non context-free
language.  We can show this using the Pumping Lemma for Context Free Languages
(Hopcroft and Ullman, 1979, p. 125).

Proposition.  The language A = lnr[[ qn ]]  for q irrational is not a context free language.

Proof:  See Appendix.

                                               
6 By the cycle of a real number q, I mean the smallest positive integer, p such that pq is an
integer.
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-------------Insert Figure 6 about here-------------

These examples show that even one of the simplest parameterized dynamical automata can
emulate computing devices with a significant range of complexities.  The framework also
suggests an interesting new way of examining the relationships between formal languages:
we can look at their locations in the parameter space of the dynamical automaton.  Figure 6
shows how the simplest (two-rule) context-free languages among ]]log[[ LRm mnnrl − are
distributed in the first quadrant of mR × mL.  By adopting a natural metric on this space (e.g.
Euclidean distance), we can talk about relationships between languages in terms of
distance.  On this view, each two-rule language is surrounded by more complex languages
(both in the rule-counting sense and the Chomsky hierarchy sense). Although the grammars
of the languages near each two-rule language are substantially different from its grammar
in possessing large numbers of rules or requiring context-sensitive rules, their distributional
properties are rather similar.  For example, the language lnr[[1.01n]] differs from lnrn only in
very long strings. If we assume that unbiased probabilities are associated with those rows in
the Input Mapping of the dynamical automaton that specify transitions out of the same
compartment, then the strings on which these two languages differ are quite rare. In Section
6, I speculate how this property may be useful in designing learning algorithms for
dynamical automata.

6. Conclusions

I have examined a particular type of computing device, the Dynamical Automaton,
whose variables and parameters take on real values.  In contrast to other work on real-
valued automata, which focuses on complexity and tractability issues, I have emphasized
the interpretation of real-valued spaces as metric spaces and examined consequences for
our understanding of how computing devices are related to one another.  First, I identified a
class of computing devices called pushdown dynamical automata whose computation is
organized around fractals, and showed that this class corresponded to the class of context
free grammars.  I illustrated a simple method of implementing dynamical automata in
connectionist networks.  Then I examined a simple dynamical automaton with real-valued
parameters and showed how this automaton behaved like various pushdown automata
under some parameter settings and like more powerful automata under other settings.
Moreover, the different automata were organized in the metric space of the computer's
parameters in such a way that nearby automata in the parameter space generated similar
sets of strings (in a probabilistic sense).  The context free grammars with the fewest rules
occupied disconnected regions of the parameter space. Between these were grammars with
more rules, including many non-context-free grammars.

6.1 Avenues worth exploring

Several interesting questions are raised by the results described here.
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Fleshing-out of Chomsky Hierarchy Relationships.  The current proposal to organize
languages in a metric space seems, at first glance, to differ substantially from standard
complexity-based approaches.  However, a close look at the example of Section 5
suggests that the relationship between the current results and the complexity-based results
may be one of augmentation rather than revision.  In particular, the overarching contrast
between context free languages and non-context-free languages is preserved as a contrast
between machines with a rational versus an irrational parameter.  Two further questions are
also worth exploring: (i) Is there a natural way, in the dynamical automaton framework, of
defining precisely the recursively enumerable languages, or of defining a set of recursively
enumerable languages that contains a set of context free languages as a proper subset?  (ii)
Do all dynamical automata map standard complexity classes onto independently motivated
parameter classes?

Approximations of Infinite Machines.  Just as the irrational numbers can be viewed as the
limits of infinite series of rationals, so the non context-free devices in the model of Section
5 can be viewed as limits of infinite series of context-free devices.  A
similar idea has been explored by Crutchfield and Young (1990) and Crutchfield (1994).
These authors analyze a particular indexed context free grammar as the limit of an infinite
series of increasingly complex finite-state devices.  They project from their results an
approach to signal analysis in which one studies the growth in size of successive machine
approximations at one level on the Chomsky Hierarchy in order
to find out if a jump to a machine at a higher level is warranted. However, they only
explore the case in which bigger and bigger finite state devices approximate a context free
device.  The current results may thus be useful in extending their method to transitions
between higher levels.

Finding all CFLs. The cascade-based analysis makes it possible to identify certain
dynamical automata in a parameterized dynamical automaton family which generate
context free languages.  However, it doesn't necessarily characterize all context free
language generators in a particular family.  A case in point is the generator described in
Section 5: only the simplest two-rule grammars follow a single cascade throughout their
computations.  It would be desirable to generalize the analysis so that one could identify the
entire set of context-free language generators in a given dynamical computing system.

Universality. I have been promoting parameterized dynamical automata as a better way of
organizing formal languages than various systems stemming from the Chomsky hierarchy.
There is one sense in which the Chomsky hierarchy is more appealing as an organizational
tool: it is nearly machine-independent, and thus very universal.  The dynamical automaton
spaces I define depend on the particular parameterized automaton under study, and do not
provide a way of organizing all languages that can be generated using a finite alphabet.
Nevertheless, it is interesting to consider the possibility that there might be a privileged set
of functions which serves as the basis for a general automaton space to which all dynamical
automata can be related.  Such a framework might be useful for studying processes that
involve incremental search over a very wide range of devices— e.g., evolution, signal
identification.
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Learning.  A natural approach to language learning is to think of it as a process of making
small adjustments in a grammar in order to improve predictive accuracy.  This approach
requires us to define what constitutes a "small adjustment'', i.e., to define similarity among
grammars.  Using standard symbolic formalisms, it is hard to choose among the myriad
ways one might go about defining similarity among grammars, especially if the grammars
are infinite-state devices. We can examine the number of rules that two grammars have in
common. But then the rules that are not shared between the two grammars can have so
many forms that it is hard to know how to take them into account. We can assign
probabilities to rules and compare the implications for local symbol transition likelihoods.
But it is hard to know how to compare between the case in which a rule belongs to a
grammar but occurs with very low probability and the case in which the rule is simply
absent from the grammar.  The hypothesis spaces defined by parameterized Dynamical
Automata (as in the example described in Section 5) look promising in this regard.  The
automata are organized in a continuum in such a way that nearby automata give rise to
similar transition behaviors (in a probabilistic sense, as mentioned at the end of Section 5).
Thus it may be possible to use dynamical automata as the basis for a gradient descent
search without having to make an arbitrary decision about rule cost.  Instead of trying to
postulate an arbitrary balance between complexity of a grammar and coverage of the data,
the learning algorithm can simply search the space for the best-fit automaton.

More generally, metric space computers allow one to see geometric relationships between
symbolic computers which are invisible from the standard analytic perspective.  It is in this
simultaneously microscopic and birds-eye perspective that their strength lies:  they reveal
the small steps that connect big, ostensibly independent regimes with one another.
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Appendix

Lemma 1. Let S = {X; w1,..., wN} be a uniquely invertible GIFS on metric space X.
Suppose O ⊆  S is a pooling set of S and x0 is in the crest of O.  Then x0 is a cascade point
of S.

Proof.  (The proof of this lemma follows mainly from the definition of pooling set— Def. 5,
in Section 3 of the text.)  Suppose, contrary to fact, that there exists σ = σ1σ2...σJ and ρ  =
ρ1ρ2...ρK ∈  {1, ..., n}* where wσ(x0) = wρ(x0) but σ ≠  ρ  ( recall that wσ(x0) =

))...))x(w(...w(w 021 Kσσσ .  Let M be equal to the minimum of J and K.  Then there are two

possibilities to consider.   Since the string σ is not equal to the string ρ , either (i) there
exists h ∈  {1, ..., M} such that σ i = ρ i for i ∈  {1, ..., h - 1} and σh ≠  ρh  or (ii) σ i = ρ i for i ∈
{1, ... M} and K ≠  J.

Under case (i), the fact that wσ(x0) = wρ(x0) and the fact that w1, ..., wN are one-to-one
imply that w

h−σ (x0) = w
h−ρ  (x0) where σ -h = σh...σJ and ρ -h = ρh...ρK.  But w

)1( +− hσ (x0) ∈  O

and w
)1( +− hρ (x0) ∈  O by condition (ii) of the definition of pooling set.  Therefore w

h−σ (x0) ≠
w

h−ρ (x0) by condition (i) of the definition of pooling set, a contradiction.

Without loss of generality, we can assume that J > K in case (ii). In this case, the fact that
wσ(x0) = wρ(x0) and the fact that w1, ..., wN are one-to-one imply that w

)1( +− Kσ (x0) = x0.

Condition (ii) of the definition of pooling set thus implies that x0 is in the complement of
the crest of O.  But this contradicts the assumption that x0 is in the crest of O.

Since the assumption led to a contradiction in both cases, it must be the case that σ = ρ . z

The following definitions permit the formal definition of a Pushdown Dynamical
Automaton (PDDA) and thus support the proof of the string-generative equivalence of
PDDAs and PDAs.

Def. 6 Let S = {X; w1,..., wN} be a GIFS with cascade point x0 and corresponding cascade
C.  Then wi:C →  C is called a push function on C.

Def. 7 Let S = {X; w1,..., wN} be a a uniquely invertible GIFS with cascade C.  The
inverses of the wi are called pop functions on C.

The following definition makes it possible to keep track of changes in the control state.

Def. 8 Let S = {X; w1,..., wN} be a GIFS.  Let C1 and C2 be disjoint cascades under S with
cascade points x10 and x20 respectively.  Then the function f: C1 →  C2 such that for all x ∈
C1 the x10-address of x is equal to the x20-address of f(x) is called a switch function.
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Note that f is one-to-one and onto, and hence uniquely invertible for all x' ∈  C2.

Def. 9 Let  M be a dynamical automaton on metric space X.  We say M is a pushdown
dynamical automaton (PDDA) if there exists a GIFS, S = {X; w1,..., wN} with cascade
points x10, x20, ..., xK0 ∈  X, K ∈  {1, 2, 3, ...} and corresponding cascades, C1, C2, ..., CK

such that

(i) C1, C2, ..., CK are disjoint.

(ii) For x ∈  U
K

i
iC

1=
, the partition compartment of x is determined by the conjunction

of the index, i, of the cascade Ci containing x and top
iC (x).

(iii) Let m be a compartment of the partition of M.  Each function f: m →  X  in the
input mapping is either a stack function, a switch function, or a composition of
the two when restricted to points on one of the cascades.

(iv) The start state, x0, and final region, FR, of M are contained in U
K

i
ix

1
0

=
.

Theorem 1.  L(PDA) = L(PDDA).

Proof.   In refering to the parts of PDAs, I use the notation of Hopcroft and Ullman (1979).

Part i.  (L(PDA) ⊆  L(PDDA)).   It is straightforward to prove this direction by converting
Moore's (1998) class of Dynamical Recognizers for CFLs into a class of PDDAs for CFLs.
Here, for the convenience of someone wanting to implement a PDDA in a connectionist
network, I flesh out the method sketched in the text.

Consider context free language L.  Derive a PDA, Ma, for L that recognizes strings by  final
state (Hopcroft and Ullman, 1979).

Ma = (Q, Σ a, Γ, δ, q1, Z0, F)

The goal is to define a corresponding pushdown dynamical automaton,

Md = (X, F, P, Σ d, IM, x10, FR)

Suppose Γ = {1,..., N}, N a positive integer.   Let en ∈  ℜ N be the vector with a 1 on
dimension i and 0s on all other dimensions.  Suppose Q = {1,..., K}, K a positive integer.
Define the GIFS,
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S = {ℜ N+1; wn, n ∈  {1, ... N}}

where
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C  for k ∈  {1,..., K}.  Then the members

of Ck are cascade points of S.  to see this, consider xk0 and let O be the open unit hypercube
in the positive quadrant of ℜ N+1 with a corner at the origin.  Note that for all x ∈  O, the nth
coordinate of wn(x) is in the interval (1/2, 1) and the mth coordinate of wn(x) is in (0, 1/2)
for m ≠  n and 1 ≤  m, n ≤  N.  Therefore each wn(O) ⊂  O and wn(O) ∩  wm(O) =  ∅ .
Moreover, xk0 ∉  wn(O) for each n.  Thus O is a pooling set of S and by Lemma 1, xk0 is a
cascade point.  Moreover, the cascades C1,..., CK corresponding to x10,...,xK0 are disjoint.

Assume, without loss of generality, that Z0 = 1.  Let the K ``finite states'' of Ma be labeled
q1, ..., qK.  Assume, without loss of generality, that q0 = q1.

Now define the parts of Md as follows.  Let X = X' × (0, 1], where X' is [0, 1]N.  Let Σ d = Σ a.
Let the partition P include the compartments {Xn ×  K

i : n ∈  {1,...,N} and i ∈  {1,...,K}}

where Xn =  n2
1N

2
1 )(0, e+ , as well as the compartments {x10}, ..., {xK0}.  Let the name of

compartment Xn × K
i be Mi,n for each i and each n, and let the name of compartment xi0 be

Mi,0 for each i.

Build the input mapping, IM as follows, where h, n ∈  Γ Γ∪ε , s ∈  ∪ε   Σ a = Σ d, and
xx =)(w e :

(i) If (qi, hn) is a member of δ(qi, s, n) then let (Mi,n, s, wh) be a member of IM. (push
function)

(ii) If (qi, ε ) is a member of δ(qi, s, n) then let (Mi,n, s, wn
-1)  be a member of IM. (pop

function)
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(iii) If (qi, n) is a member of δ(qj, s, n) then let (Mi,n, s, f(x) = 





+ −
+ K

ji
1N

[N]

x
x

)  be a

member of IM. (switch function)

(iv) Handle the composite cases by composition.

For each, i ∈  {1, ..., K}, if qi ∈  F, then let xi0 be a member of FR.

At the beginning of processing, when the state is q1 and the top of the stack of Ma is ε , the
current state x of Md (namely, x10) has index 1 and top

1C (x) = ε .  Thus it can be said at this
point that when the state of Ma is qi and the top of the stack is Z, then the current state x of
Md has index i and top

iC (x) = Z.  Moreover, the definition of the input mapping implies
that this situation never changes during the course of processing a grammatical string.
Thus if (q0, σ, ε ) leads to (qj, ε , ε ) under Ma,  where qj ∈  F, then the state x moves by
legal transitions under Md from x10 to xj0 ∈  F during the processing of string  σ and vice
versa.  Thus Ma and Md recognize the same language.

Part ii. (L(PDDA) ⊆  L(PDA)).   Consider the PDDA,

Md = (X, F, P, Σ d, IM, x10, FR)

Let the associated GIFS be S = {X; w1, ..., wN} with cascade points x10, x20, ..., xK0 ∈ X
for K ∈  {1, 2, 3, ...} and corresponding cascades, C1, C2, ..., CK.  Define the corresponding
pushdown automaton,

Ma = (Q, Σ a, Γ, δ, q, Z0, F)

as follows.  Let the stack of Ma be initially empty (Z0 = ε ) and assume that Ma recognizes
strings by emptying its stack.  Let Σ a = Σ d.  For each cascade, Ci, if Md is on Ci, let the
control state of Ma be qi.  Thus define Q as {qi: i ∈  {1, ..., K}}.  Let Γ be {1,..., N}.  Let δ
be defined as follows.  Consider x a point in

U
K

i
iC

1=
.  For each possible index value i ∈  {1, ..., K}, and each possible value

Z = top
iC (x) ∈  {ε , 1, ... N}, compute the partition compartment to which x belongs (this is

possible under the definition of a PDDA).  Suppose this partition compartment is
compartment j.  Examine the input mapping, IM, for rows containing j.  For
each such row, (j, s, f) for s ∈  Σ d and f ∈  F, let δ be defined as follows:

(i) If f = wh is a push function, then let (qi, hZ) be a member of δ(qi, s, Z).

(ii) If f = wh
-1 is a pop function, then let (qi, ε ) be a member of δ(qi, s, h).
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(iii) If f is a switch function that switches from cascade i to cascade l, then let (ql, Z)
be a member of δ(qi, s, Z).

(iv) Handle the composite functions by composition.

(v) If xi0 is in the final region of Md, then let qi ∈  F.

Note that δ is well-defined in every case because C1, ..., CK are disjoint cascades and Md
performs its computations on their union.

Let q1 be the initial state of Ma (i.e., let the initial state bear the index of the start state of
Md).  For x = x10 it can be truly asserted that if the index of x is i, the state of Ma is qi, and if
top

iC (x) is Z, then the top of the stack of Ma is Z.  Moreover, this situation is
preserved under δ.  Thus, if the state, x, moves by legal transitions from x10 to xj0 under Md

during the processing of string σ, then (q0, σ, ε ) leads to (qj, ε , ε ) under Ma and vice
versa.  Thus Ma and Md recognize the same language.  z

Proposition 1.  The language A = lnr[[ qn ]]  for q irrational is not a context free language.

Proof.  I proceed by showing that if A = lnr[[ qn ]] is a context free language, then q is
rational.

The Pumping Lemma for Context Free Languages says that if A is a context free language,
then there is a non-negative integer n such that any string σ ∈  A  whose length is greater
than n can be written σ = uvwxy in such a way that

 (i) vx   ≥  1

(ii) vwx   ≤ n

(iii) for all i  ≥  0, uviwxiy is in A.

Suppose A satisfies the Pumping Lemma for n > n0.  Consider a string uvwxy that can be
pumped in accord with condition (iii).  Clearly, v must consist of a positive number of l's
and x must consist of a positive number of r's.  Let  cl = v   and cr =   x  .  Without loss of
generality, we can assume that v is rightmost in the string of initial l's so w   = 0.  Let dl

=u   and dr = y  .  Then, by the definition of A we can write

cr i + dr = [[ q (cl i + dl) ]]                                      (1)

For each i ∈  N, let δi be the fractional part of q (cl i + dl).  Then, by (1), we can write
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But unless δi+1 = δi for all i, equation (1) is false for sufficiently large i.  Therefore,
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c
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Since cr and cl are integers, q is rational.  z
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Illustration Captions:

Figure 1:  A neural network for parenthesis balancing.

Figure 2:  An indexing scheme for selected points on the Sierpinski triangle.  The points
are the analogues of stack states in a pushdown automaton.  By convention, each label lists
more-recently-added symbols to the left of less-recently-added symbols.

Figure 3:  Sample trajectory of DA 1.

Figure 4: Network 1.  A neural implementation of Grammar 1.  Square nodes denote
gating units and circular nodes denote signalling units.

Figure 5:  ),( 8
17

2
1M  accepting l3r3.

Figure 6: The bands in the space mL x mR where the simplest (two-rule) context free
languages reside.



2

Table 1: The push and pop functions of Moore (1998).

Name Function

pushi �x+ (1� �) i
m

popi
1
�

�
x� (1� �) i

m

�
= push�1

i (x)
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Table 2: Grammar 1.

S ! A B C D A ! a S B ! b S C ! c S C ! a S
S ! � A ! a B ! b C ! c C ! a

D ! d S
D ! d
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Table 3: Dynamical Automaton (DA 1).

Compartment Input State Change

z1 > 1=2 and z2 < 1=2 b ~z  ~z �
�
1=2
0

�

z1 < 1=2 and z2 < 1=2 c, a ~z  ~z +
�

0
1=2

�

z1 < 1=2 and z2 > 1=2 d ~z  2
�
~z �

�
0

1=2

��

Any a ~z  1
2
~z +

�
1=2
0

�
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Table 4: a. Part of the partition for the PDDA of example 3.1.

Index Compartment

1
�
1
0

�

2
�
(0;1)
0

�

3
�
(0;1)
1

�

4
�
1
1

�

b. The Input Map for the PDDA of example 3.1.

Compartment Index Symbol Function

1 l ~x!
�
1

2
x1
x2

�

2 l ~x!
�
1

2
x1
x2

�

2 r ~x!
�

2x1
x2+1

�

3 r ~x!
�
2x1
x2

�
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Table 5: Weights and unit types for the neural implementation of Grammar 1.

Unit Type Input Weight

�11 Threshold = 1=2 Ia 1
�12 Threshold = 1=2 Ib; Ia;c 1
�13 Threshold = 1=2 Id 1
�21 Threshold = 1=2 Ia 1
�22 Threshold = 1=2 Ib; Ia;c 1
�23 Threshold = 1=2 Id 1
z1 Linear Ia 1/2

Ib -1/2
z2 Linear Ia;c 1/2

Id -1
z1 Linear z1 via �11 1/2
z1 Linear z1 via �12 1
z1 Linear z1 via �13 2
z2 Linear z2 via �21 1/2
z2 Linear z2 via �22 1
z2 Linear z2 via �23 2
p1 Threshold = 1=2 z1 1
p2 Threshold = 1=2 z2 1
Oa Threshold = �1 | |
Ob Threshold = 1=2 p1 1
Oa;c Threshold = �1=2 p1 -1

p2 -1
Od Threshold = 1/2 p2 1
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Table 6: a. Part of the partition for the parameterized dynamical automaton of Example
5.1

Index Compartment

1
�
1
0

�

2
�
(0;1)
0

�

3
�
(0;1)
1

�

b. The input mapping for the parameterized dynamical automaton of Example 5.1.

Compartment Index Symbol Function

1 l ~z !
�
mLz1
z2

�

2 l ~z !
�
mLz1
z2

�

2 r ~z !
�
mRz1
z2+1

�

3 r ~z !
�
mRz1
z2

�
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Table 7: A context free grammar for generating lnr2n.

S ! l r r
S ! l S r r



9

Table 8: A context free grammar for generating lnr[[1:2n]].

S ! l Ss r
2

S ! l2 Ss r
3

S ! l3 Ss r
4

S ! l4 Ss r
5

S ! l5 Ss r
6

Ss ! �
Ss ! l5 Ss r

6
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Figure 1: A neural network for parenthesis balancing.
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Figure 2: An indexing scheme for selected points on the Sierpinski triangle. The points
are the analogues of stack states in a pushdown automaton. By convention, each label
lists more-recently-added symbols to the left of less-recently-added symbols.
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Figure 3: A sample trajectory of DA 1.
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Figure 4: Network 1. A neural implementation of Grammar 1. Square nodes denote
gating units and circular nodes denote signalling units.
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Figure 5: M(1=2; 17=8) accepting l3r3.
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Figure 6: The bands in the space mL �mR where the simplest (two-rule) context free
languages reside.

1

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

o

m_R

m
_
L


