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Abstract

A recurrent connectionist model of normal word reading, pa-
rameterized on an artificial lexicon, can solve anagrams in
which the letters of a word have been highly permuted. Dis-
tinctive predictions of the model about competition effects in
anagram solution and about which reorderings should be hard
were supported by two experiments in which human subjects
solved English anagrams. The results are in line with prior
work on anagram solution, which supports the idea that skilled
anagram solvers employ their naturally acquired knowledge of
word structure to succeed at this unusual task. The results ex-
tend previous modeling efforts by showing how anagram so-
lution ability may be closely related to normal reading abil-
ity. Although the model proposed in the current paper is not a
learning model, we suggest that exploring the dynamics of re-
current neural networks like the one we propose may provide
an avenue by which the theory of cognition can address highly
extrapolative generalization ability, in which people excel at
tasks that are qualitatively distinct from their training experi-
ences.
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Introduction

Insight into the nature of human generalization ability is one
of the primary achievements of connectionist learning mod-
els. In particular, when a network with hidden units has been
trained to near zero error on a set of target stimuli, it has often
mapped the stimuli into a continuous manifold whose struc-
ture reflects the structure of the training environment. Cor-
rect predictions about new cases can be made by interpolat-
ing on this manifold. But humans sometimes exhibit capa-
bilities that go far beyond their training experience and also,
for that matter, plausible conditions of evolutionary shaping.
Creative abilities in the arts, athletics, and problem solving
may fall into this category. Such cases may be better char-
acterized as “extrapolation” rather than “interpolation”, and
indeed, the extrapolation is sometimes of a very radical form.
One might ask if connectionist models can provide insight
into such cases of radical extrapolation.

The solving of highly permuted anagrams of words by peo-
ple (e.g., recognizing “rwtae” as a reordering of the word
“water”) has in common with such abilities that most peo-
ple do not solve anagrams extensively while they are grow-
ing up; however, in the right conditions, as mature read-
ers, they sometimes experience “pop-out” with an anagram,
where the solution to a highly permuted anagram emerges
very quickly “without any conscious awareness of a solution
attempt” (Novick & Cote, 1992). This may be a case in which
a complex behavior develops without explicit training in the
behavior. Helpfully, it is an ability that is fairly amenable to
psychological study.

Prior Related Work

Prior work on highly permuted anagram solution has revealed
several important features of the process:

(a) Pop-out has the hallmarks of parallel constraint satis-
faction: it is fast; a person who experiences it cannot typi-
cally identify a series of steps involved; it is more common
in skilled than unskilled anagram solvers (Novick & Sher-
man, 2008). (b) Anagrams whose targets are consistent with
broad structural patterns in the language are easier to solve
than anagrams that are at odds with these, and skilled ana-
gram solvers are more sensitive to the manipulation of these
properties than poor anagram solvers (Novick & Sherman,
2008). Relevant structural patterns include bigram frequen-
cies (high bigram frequencies in the target facilitate solution)
(Gilhooly & Johnson, 1978; Mayzner & Tresselt, 1958), syl-
labic patterning (vowel initial words, which are rarer, are
harder to solve) (Novick & Sherman, 2008), and phonolog-
ical regularity (Novick & Sherman, 2008). (c) Anagrams
which themselves have low bigram frequencies are easier to
solve (Mayzner & Tresselt, 1959) and anagrams whose let-
ter sequence resembles that of the target are easier to solve
(Dominowski, 1966; Gilhooly & Johnson, 1978).
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An(other) Interactive Activation Model of
Visual Word Recognition

These findings would make sense if skilled anagram solution
were an extension of natural word-reading ability, which is
highly sensitive to structural knowledge of the language and
is generally agreed to involve parallel processing in skilled
readers. However, we know of no current model of skilled
word reading that is able to solve highly permuted anagrams.

In fact, the canonical current models of word recognition,
which stem from McClelland & Rumelhart’s (1981) Inter-
active Activation Model of Word and Letter Perception, use
slot-filler representations for letters and are thus poorly suited
to capture letter permutation effects. We propose a solution
that takes up a prominent feature of the early interactive ac-
tivation models: units corresponding to structures at multiple
spatial (and temporal) scales (e.g. phoneme, bigram, word).
Unlike in the canonical models, the units in our model detect
structure independently of spatial location. They also acti-
vate partially in response to partial similarity. As a result, the
model is order-sensitive without being order-rigid.

Grimes and Mozer (2001) propose a recurrent connection-
ist model of anagram solution in which constellations of bi-
grams compete to be the most active. If the network stabi-
lizes on a pattern which is not a solution, the model identifies
a symbol ordering consistent with the current state and uses
this symbol ordering to reset the state for another episode of
stabilization. This model correctly predicts the positive cor-
relations between high bigram frequency in the target and so-
lution time, and between low bigram frequency in the stimu-
lus and solution time. However, because the constraint satis-
faction process is not constrained by lexical information, the
model does not seem well-suited to modeling normal reading.

Our model, NGRAMSWELL, modifies the constraint sat-
isfaction architecture of Grimes & Mozer to include a unit for
every n-gram in its vocabulary (n ranges from 1 to the length
of the longest word). Thus, constraint satisfaction operates
over multiple spatial and temporal scales and is simultane-
ously sensitive to both lexical and sublexical structure. Each
unit is connected to every other unit. The units have activa-
tions in the range (0, 1), and the vector of activation values, d
is updated according to

g = netinput-d- (1 —ad) )
netinput = Wd+n

where - denotes element-wise multiplication, W is the matrix
of weights, and 1 is small-magnitude Gaussian noise. The
weights are given by

Corr(i, j) -n;-n;j )
where Corr(i, j) is the normalized covariance (correlation co-
efficient) of n-gram i and n-gram j (two n-grams are counted
as co-occurring whenever they appear in the same word). n,
refers to the length, in letters, of n-gram x. The length fac-
tors serve to make the interactions between units correspond-
ing to larger n-grams more powerful, thus implementing a

Wij =

bias toward coherent outcomes. Because the weights are pre-
specified, this model does not fit the standard connectionist
paradigm for studying generalization, in which a model is
trained on some data and tested on others. However, the em-
ployment of correlation coefficients as weights is closely re-
lated to Hebbian Learning, a well-motivated learning mecha-
nism, and the scaling of weights associated with larger units
may be related to the plausible assumption that more neu-
ral elements are involved in the conception of more complex
objects. We view the current model as a stepping stone to dis-
covering a learning model that addresses the radical extrapo-
lation issue: by identifying the end-state of learning, we may
have better luck finding effective architectures and learning
mechanisms (Tabor, 2003).

When the model is exposed to a string of letters, each unit
in the model activates if its pattern is somewhere in the input
(position independent detection) and it activates partially in
response to partial match. For example, the input “daisy” ac-
tivates the <ai> unit strongly and the <ia> unit less strongly.
The default initial activation is 0.03; the fully matching units
start at 0.04. An n-gram counts as partially matching the in-
put if the input contains its letters in a contiguous group in
a different order. In this case, the unit is activated to 0.035
(halfway between the resting level and the full match level).
The model settles until the rate of activation change in every
unit falls below a threshold (0.0001). For each word, k, in
the model’s vocabulary, the state in which all the n-grams of
word k are maximally activated (a; = 1) and all other n-grams
are minimally activated (a; = 0) is called the ideal state corre-
sponding to word k. At every point in time, a vector of word
activations is computed as the cosine of the angle between
the model’s current state and the ideal state of each word in
its vocabulary. If the target word is not the most activated
word when the model reaches the stability threshold, every
unit is reset to its initial activation level and the model re-
settles. The standard deviation of the noise in netinput is 0.1.
The process repeats until the target is activated or a maximum
number of timesteps (800) is reached. We tested the model on
small (40-word), artificial vocabularies of 5-letter words gen-
erated randomly from an alphabet of 20 letters. Fifteen of the
40 words were constructed to overlap in four out of five let-
ters in order to create a clear contrast between high and low
competition words.

If the letters of an actual vocabulary item are presented in
the correct order, then the cosine distance vector reliably ex-
hibits an early surge in the activation of the correct candidate,
coincident with a plunge in the activations of all other words,
and followed by a more gradual stabilization in which the
correct candidate has the highest activation and other candi-
dates asymptote at various levels below it. It is this reliable
ability to quickly recognize normally-ordered words, in con-
junction with our claim made above that the weight struc-
ture could be learned under normal circumstances, that sup-
ports our claim that this model plausibly approximates nor-
mal word reading. On the other hand, if the letters are pre-



sented in a highly permuted order, the activation of the tar-
get word sometimes surges, just as it does in normal reading
(corresponding, perhaps, to “pop-out” as discussed above). It
also often happens that the correct candidate never surges and
some other word becomes dominant, or the correct candidate
plunges along with the rest of the vocabulary at first while
some other word dominates, and then rises slowly to become
the preferred choice. If the model stabilizes on an incorrect
word before the maximum allowed time has passed, then it is
restarted with the same inputs and allowed to stabilize again
(corresponding, roughly, to serial solution search). Restarting
can remedy a previous failure to discover a solution because
the noise in netinput causes the model to explore different
avenues on each pass. The model has six free parameters:
number of letter types, number of words, number of high-
overlap words, noise magnitude, stabilization threshold, and
maximum time steps. The settings of these parameters (re-
ported above) were chosen via intuitive exploration of the pa-
rameter space, guided by the desire to emphasize the contrast
in accuracy values between high and low competition words,
as defined below.

Predictions

Two predictions of the model distinguish it: (1) Compe-
tition/cooperation among similarly structured words should
systematically influence accuracy and reaction time; (2) The
degree of permutation of the target words should systemati-
cally influence accuracy and reaction time.

To make prediction (1) specific and testable, we defined the
level-n competition of a word k as

1— friends(n) 3)

sharers(n)

JCompy(n) =

where sharers(n) is the number of words that share some sub-
set of n letters with word k and friends(n) is the number of
those that contain »n letters contiguously in the same order as
they occur in word k. The competition measure allows us
to compute a property of real English words that parallels a
property of NGRAMSWELL, which we have so far only im-
plemented with small vocabularies. For five letter words of
English, most of the variance in competition occurs at level
4 (SDs: Level 2: 0.046; Level 3: 0.053; Level 4: 0.120).!
Likewise, when NGRAMSWELL is parameterized with a 40
word vocabulary in which 15 words overlapped in four out
of five letters, roughly mimicking the high density of over-
laps in high-competition English words, most of the variance
in competition occurs at level 4 (SDs: Lvel 2: 0.061; Level
3: 0.097; Level 4: 0.140). Therefore, Experiment 1 (de-
scribed below) focused on contrasts in JComp(4). JComp is
distantly related to neighborhood density measures like num-
ber of orthographic neighbors, but it posits influences from
highly permuted orders, which are not taken into account un-
der the usual 1-letter-difference definition of neighborhood,

IThese statistics were computed from a sample consisting of the
words with COBUILD frequency greater than 100 in the CELEX
database.

and it differentiates between neighbors that share the letter
order of the target word and neighbors that have the same let-
ters in a different order.

To formalize prediction (2), we defined classes of permuta-
tions based on Bubblesort, an algorithm which sorts a string
by systematically swapping adjacent elements that are out of
order (Knuth, 1973).2 For five-letter strings with unique let-
ters, the Bubblesort distance from the target (i.e. number of
Bubblesort swaps required to transform the string into the tar-
get) is O for the target itself and 10 for perfect reversal; all
other distances lie between these values.

Figures 1 and 2 show the results of a simulation experiment
that explored predictions (1) and (2) in NGRAMSWELL. The
figures were constructed by choosing a JComp(4) threshold
(0.75) that separated the JComp(4) values of the 40 vocab-
ulary items into two distinct clusters termed “High Compe-
tition” and “Low Competition”. Each word of the vocabu-
lary was tested 10 times for each of 10 different permutations
at each Bubblesort level. The 10 choices at each Bubble-
sort level were sampled randomly with replacement.> Two
properties of the figures are of central interest here: (i) the
mean accuracy of the high competition words is considerably
lower than that of the low competition words, while the read-
ing times show the opposite relation, indicating in both cases
that anagrams of high competition words are harder to solve;
(i1) accuracy and reaction time appear to be in a quadratic re-
lationship with Bubblesort level, indicating that the extreme
orders are relatively easy compared to the middle orders.

We ran a multiple regression analysis to test the signifi-
cance of these claims. Both Bubblesort Level and Compe-
tition (JComp(4) value) were analyzed as continuous factors
(the High Comp/Low Comp grouping shown in the figures
is for illustration purposes only). Indeed, the linear term of
JComp(4) was significantly negative (b =-2.015, p < .001) in
the accuracy analysis and significantly positive (b = 1393.6,
p < .001) in the reaction time analysis, supporting the claim
that high competition is harder than low competition. Second,
the quadratic term of the Bubblesort Level was significantly
positive in the accuracy analysis (b=0.011, p < .001) and sig-
nificantly negative in the reaction time analysis (b = -9.054,
p < .001), supporting the claim that the extremes are easier
than the middle range. These two findings were probed in
experiments with human data, which we discuss below. The
locations along the Bubblesort Level axis of the vertices of
the fitted parabolas were 6.14 and 5.01 (High vs. Low Com-
petition in the Accuracy data) and 6.27 and 5.16 (High vs.
Low Competition in the Reaction Time data). The fact that
these values are all greater than 5, the midpoint of the Bubble-
sort Level range, indicates that the model finds forward order

2 Although Bubblesort is notoriously inefficient as a sorting pro-
cedure, it provides a simple way of measuring order in anagram
stimuli.

3Note that for Bubblesort levels at or near the extreme values,
0 and 10, this method produces many copies of the same structure,
but for levels in the middle range, the samples are spread over a
variety of orders. When the same order is presented many times, the
outcome variation is determined entirely by the noise in netinput.



easier than reverse order. We also found a significant inter-
action between JComp(4) and Bubblesort Level, with a big-
ger difference between competition levels in the middle range
than at the extremes in both accuracy and reaction times (p <
.001), but we did not probe for this interaction in the human
experiments (we leave this as a question for future research).
Nine additional simulations with different randomly chosen
vocabularies produced the same pattern of results, indicating
that the results were not due to random properties of the par-
ticular case reported here.
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Figure 1: NGRAMSWELL interaction between Bubblesort
level and competition level in accuracy. The curves show the
best quadratic fit to the individual trial data.
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Figure 2: NGRAMSWELL interaction between Bubblesort
level and competition level in reaction times. The curves
show the best quadratic fit to the individual trial data.

Prediction (1) in NGRAMSWELL stems from the fact that
words that share n-grams verbatim with a target tend to boost
the activation of those n-grams, thus boosting the target, but
words that share permuted n-grams get activated when the tar-
get’s letters are present and create competition for the target
(since the permutations of large n-grams, which have large
weights between them, tend to be anti-correlated). Prediction

(2) stems from a general symmetry of linear structures like
words: reverse order mirrors forward order. Therefore, each
n-gram of the target partially matches an n-gram of the ana-
gram, resulting in a coalition of units that tends to favor the
target, though not as strongly as with correct order, because
of the reduction of activation with partial match.

Many of the empirical studies on anagram solution to date
point to bigram and whole word frequency measures as the
strongest predictors of solution accuracy and speed (Gilhooly
& Johnson, 1978; Mendelsohn & O’Brien, 1974; Mendel-
sohn, 1976; Novick & Sherman, 2004, 2008). However, in
the absence of explicit modeling proposals, there has been lit-
tle motivation for considering a measure like JComp(4). We
manipulate this measure here in order to see how well it pre-
dicts human performance. Two experiments explored predic-
tions (1) and (2), respectively, of the model.

Experiment 1
Method

Farticipants. 31 college students from the University of Con-
necticut participated for course credit.

Materials. The set of all words with COBUILD (1991 ver-
sion) frequency higher than 100 was culled from the Celex
database. This set was used to calculate competition values
for all the five-letter words in the set at levels 1 through 5.
From this set, 10 words were chosen to have JComp(4) >
0.9 (M =0.94, SD = 0.01) and one anagram solution (HIGH
competition, 1 solution), another 10 words were chosen to
have JComp(4) > 0.9 and two solutions (HIGH competition,
2 solutions), and a third set of 10 had JComp(4) <= 0.8 M
= 0.63, SD = 0.10) and one solution (LOW competition, 1
solution). All test words had HAL frequency > 1500 (Balota
et al., 2007). The HIGH, 1 solution and LOW, 1 solution
targets were chosen with a wide range of log frequency val-
ues (HIGH: M = 4.46, SD = 0.65; LOW: M = 4.32, SD =
0.72), and each HIGH competition word was paired with a
LOW competition word of similar frequency. All targets were
monomorphemic. Anagram orders were evenly distributed
across Bubblesort levels 4, 5, and 6 (the middle of the Bub-
blesort range). A windows PC was used with a standard key-
board as the input device. The GUI was designed in E-Prime.

Procedure. Participants read instructions which explained
anagrams and indicated a 60-second time limit on each prob-
lem. Three practice trials with feedback followed. On each
trial, an anagram was displayed in the center of the screen in
all capital letters. When the participant felt s/he had reached a
solution s/he pressed the spacebar, the anagram disappeared,
and s/he had the opportunity to type in a solution, pressing
spacebar when s/he was ready to move to a new trial. Each
participant attempted 30 critical trials. No feedback was pro-
vided on critical trials. The computer recorded time to the
first spacebar press on each trial as well as the typed solution.



Results

Solution accuracy was assessed by having a computer com-
pare the typed solution to the intended solution or solutions
for each problem. Solutions in the HIGH competition, two
solutions condition were counted as correct if they matched
either target word. The means and standard deviations of
the conditions are shown in Table 1. Since the focus of the
present study is the contrast between HIGH and LOW com-
petition, 1 solution problems, we will not discuss the 2 solu-
tions condition further.

An ANOVA with Subject and Item as random factors re-
vealed a significant effect of competition (HIGH vs. LOW)
in both accuracy (Fi(1, 30) = 132.78, p < .001; F(1, 18) =
34.09, p < .001) and reaction times (F;(1, 30) = 69.82, p <
.001; Fa(1, 18) = 17.48, p < .001). The same main effect ob-
tained when we re-ran the reaction time analysis on accurate
trials only.

Table 1: Experiment 1 means and standard deviations of ac-
curacy (Acc) and solution time (RT) (human subjects experi-

ment).
Condition Acc SD RT(s) SD
HIGH, 1 solution 041 049 29.59 22
LOW, 1 solution 0.80 040 16.31 18
HIGH, 2 solutions 0.64 048 20.04 19

To make a preliminary comparison between JComp(4)
and other predictors of anagram solution statistics, we con-
ducted a stepwise multiple regression with HAL Frequency,
Position-Dependent Sum of Bigram Frequency (”Summed
Bigram Frequency” or SBF), and JComp(4) as linear predic-
tors in that order. SBF values were obtained from the English
Lexicon Project (Balota et al., 2007). In the Accuracy data,
HAL Frequency alone accounted for 22% of the variance.
Adding SBF significantly improved the model, accounting
for an additional 12% of the variance. Adding JComp(4) fur-
ther improved the model, capturing an additional 22% of the
variance. In the final model, JComp(4) and HAL Frequency
contributed unique predictive power, but SBF did not. In the
Reaction Time data, neither HAL Freq nor SBF captured sig-
nificant variance. JComp(4) made a marginally significant
addition to the contributions of these two.

Discussion

The results confirm the prediction of NGRAMSWELL that
anagrams with high competition targets should be harder to
solve than anagrams with low competition targets. The anal-
ysis also provided a suggestion that JComp(4) has predic-
tive power beyond that of some previously studied measures.
We consider this comparison preliminary because the stimuli
were designed to maximize the contrast in JComp(4) and Hal
Frequency but not SBF.

Experiment 2 probed prediction (2) of NGRAMSWELL:
that difficulty should be a quadratic function of Bubblesort
distance.

Experiment 2
Method

Participants. 73 college students from the University of Con-
necticut participated for course credit.

Materials and Design. The experiment manipulated one
factor, Bubblesort distance, which ranged from 0 to 10. The
stimuli were chosen using the same criteria as in Experiment
1, with the additional constraint that no word could have re-
peated letters. Eleven lists were constructed using a Latin
Square design so that every target appeared at every Bubble-
sort level across the lists.

Procedure. The procedure was the same as in Experiment 1
except that the instructions were modified to alert participants
to the possibility that some trials would require no reordering
of letters (Bubblesort distance = 0).

Results

We fitted a quadratic polynomial to the accuracy and the re-
action time data, plotted as a function of Bubblesort Distance
(Figure 3). A regression analysis indicated that the quadratic
term was significantly positive in the accuracy analysis (b, =
0.0073, p < .001) and significantly negative in the reaction
time analysis (by = -199.82, p < .001). Consistent with the
results from NGRAMSWELL the Bubblesort Distance coor-
dinate of the focus of the parabola was 5.72 in the accuracy
analysis and 6.6 in the reaction time analysis: both values are
slightly above the midpoint of the Bubblesort range.
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Figure 3: Experiment 2: Mean Accuracy and Mean Reaction
Time vs. Bubblesort level (human subjects experiment).

General Discussion

We have presented evidence for an interactive activation
model, NGRAMSWELL, of word reading with position-
independent multi-scale feature detection. The model made
qualitatively appropriate predictions about two new results
in anagram solution: (1) manipulating the competition mea-
sure, JComp, which detects the intensity of jockeying among
large-scale partial aggregations of letters, had a significant in-



fluence on accuracy and reaction times and (2) accuracy and
reaction times vary quadratically with Bubblesort distance.

Result (1) extends prior work on anagram solution by
identifying a new measure which may be an effective pre-
dictor of anagram solution times. NGRAMSWELL sug-
gests that the predictive power of JComp may stem from
the self-organizing nature of the process of word detection.
Self-organizing occurs when interactions among many au-
tonomously acting but interacting elements give rise to struc-
ture at the scale of the group. One of the novel predictions
of the self-organization approach to cognition is that struc-
tures at an intermediate scale between atomic micro-elements
and fully well-formed objects play a significant role in mak-
ing or breaking each perception episode (Tabor, Galantucci,
& Richardson, 2004). The current results suggest that the n-
grams with n just short of the length of the target are such
intermediate structures in the anagram task.

Result (1) is also closely related to work on the effect of
neighborhood size and type on word recognition under nor-
mal circumstances. Indeed, prior findings suggest that ex-
change of position of two adjacent letters produces less men-
tal distortion than the replacement of one letter by a different
one (e.g., Perea & Carreiras, 2006), even though the stan-
dard definition of lexical neighborhoods treats the exchange
case as a more radical shift. The model proposed here sug-
gests a way of organizing the encoding of mental structure
that achieves an appropriate degree of positional fluidity. Al-
though it is not a learning model, it may help guide the dis-
covery of an appropriate learning model.

The Introduction suggested that, by examining how people
solve anagrams, we might learn something about how they
can sometimes perform well in a domain with which they’ve
had little direct experience. Result (2) offers a specific in-
sight about this issue: we can ask, why it is that people can
read backwards fairly easily, compared to solving anagrams
with Bubblesort levels in the mid-range (4-6). The answer
seems to be that reversing letter order preserves the higher or-
der relational structure of a sequence even though it destroys
many local perceptual cues. It does this in virtue of a sym-
metry that is inherent in the nature of sequences in general.
Perhaps what people are doing when they are successfully
navigating untrodden territory is tuning into such universal
regularities. This may be true even in the case of solving the
hard anagrams (Bubblesort levels in the middle range), which
people and NGRAMSWELL sometimes manage to solve by
pop-out. We suggest exploring the deployment of symme-
tries in the parameter spaces of dynamical models to try to
find out what conditions create the possibility of rich extrap-
olative generalization.
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