
444 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 2, MARCH 2003

Learning Exponential State-Growth
Languages by Hill Climbing

Whitney Tabor

Abstract—Training recurrent neural networks on infinite state lan-
guages has been successful with languages in which the minimal number of
machine states grows linearly with sentence length, but has faired poorly
with exponential state-growth languages. A new architecture learns several
exponential state-growth languages nearly perfectly by hill climbing.

I. INTRODUCTION

Recurrent neural networks (RNNs) of sufficient size can implement
Turing machines [1] and, thus, perform the same computations as sym-
bolic computing mechanisms. But training RNNs to learn infinite-state
languages has not been easy. Recently, a number of researchers have
succeeded in inducing a stack-like mechanism in an RNN with an un-
differentiated set of hidden units [2]–[7]. Impressive accuracy has been
achieved for languages in which the number of necessary machine
states grows linearly with the maximum length of sentence (e.g.,a

n

b
n,

a
n

b
n

c
n). For these languages, it suffices for the hidden units to func-

tion as symbol counters [2]. But performance has been much poorer
on exponential state-growth languages, which require the machine to
keep track of the order, as well as the number of symbols on the stack.
Table I shows several languages on which RNNs have been trained,
along with their state-growth rates.

All the RNNs mentioned process corpus distributions.1 ,2 A corpus-
distributionis a map from each prefix (i.e., sequence of words from the
vocabulary) to a probability distribution over next-words. Theproba-
bility of a word sequenceis the product of the probabilities of the suc-
cessive word-to-word transitions within it. A word sequence is agram-
matical stringof a corpus-distribution if it has nonzero probability. A
machinecorrectly processesa grammatical string from a corpus distri-
bution if, upon being presented with each word of the string in succes-
sion, it accurately specifies the probabilities of the words that follow.
An output activation vectoraccurately specifiesa probability distribu-
tion if it is closer to the correct distribution than to any other distri-
bution associated with a grammatical prefix in the corpus-distribution.
When only one next-word is possible, this method of assessing cor-
rectness is equivalent to the method used in some previous work: count
a prediction as correct if the activation of the appropriate output unit
is above 0.5 (e.g., [6]). The current method has the advantage of also
being useful in cases where probabilities are important. Table I cites
best published performance levels under this definition. The poor per-
formance of RNNs on exponential state-growth cases is an impediment
to using them for natural language processing [8], and for the many ap-
plications of symbolic stack machines.

Manuscript received September 24, 2002.
The author is with the Department of Psychology, University of Connecticut,

Storrs, CT 06269 USA (email: whitney.tabor@uconn.edu).
Digital Object Identifier 10.1109/TNN.2003.809421

1Reference[6] reports 39 correct out of 114 mixed sequences (i.e., with both
a’s and b’s). I concluded that there were a minimum of114� 39 = 73 errors
among at most3(2 � 1) states.

2Reference[8] generated strings with a probabilistic queue-grammar in which
the probability of pushing a symbol onto the queue was 0.2 at each point. The
network was trained on one pass through a 3 million word corpus of such strings.

II. PUSHDOWN DYNAMICAL AUTOMATA AND FRACTAL

LEARNING NEURAL NETWORKS

Insight into the challenge ofencodingarbitrary stack manipulations
in RNNs has been provided by [9], [10], [1], [11], and [12] who show
that fractal sets provide a natural approach. This paper takes up the
learning challenge in the framework of [12], who definespushdown
dynamical automata(PDDAs) for processing context free languages
(CFLs) in a bounded real-valued activation space. PDDAs associate
words with branches of a multidimensional Cantor set. If the branches
are nonoverlapping, then the machine can process a CFL and there exist
such nonoverlapping fractals for all CFLs [12].

A. Network Architecture

Fractal Learning Neural Networks(FLNNs) are neural networks
that induce PDDAs. Each node on the input layer of an FLNN encodes a
word from the vocabulary as in [2]. Each unit in the first hidden layer is
self-connected. The input layer projects directly to the first hidden layer
units and has second-order connections to their self-weights. These
second-order connections are linked so that when a given input unit
is on, it specifies the same value of the self-weight on all hidden units.
The first hidden layer has a linear activation function (identity) and
first-order connections to the second hidden layer. The second hidden
layer has a Gaussian activation function. It projects to the output units,
which, as a group, have the normalized exponential (or “soft-max”) ac-
tivation function, since they model the probabilities of next-words. All
maps are discrete.

The network receives words in sequence from the language it is
trained on. Each word maximally activates a single, unique unit on the
input layer. The job of the network is to activate on the output layer,
after each word is presented, the correct probability distribution over
next-words. The linear hidden layer makes it possible for the network
to make maps that are inverses of one another—a useful ingredient
in building a neural implementation of a sequence memory stack [9],
[13], [12]. The (Gaussian) radial basis functions in the second hidden
layer allow the network to map the structurally spherical fractal
branches of the first hidden layer to nominal classes which the net can
associate (via standard pattern classification) with output probability
distributions.

III. SIMULATIONS

A. Training Procedure

An FLNN with four input units, two linear hidden units, three
Gaussian hidden units, and four output units was trained on the expo-
nential state-growth languages specified in Table II. Two constraints
made learning easier: 1) the Gaussian units were assigned fixed
variances (�2 = 0:25)—this fixed the radius of the fractal branches
without loss of generality and 2) the self-weights in the first hidden
layer were initialized to one—this choice is unbiased with respect
to the fractal expansion and contraction which these weights must
perform [12].

The networks were trained by hill climbing in batch mode. A
training-corpus of sentences was processed at the current weight set-
ting and at points on a sphere in weight-space surrounding the current
setting. Only a set of orthogonal basis vectors and their negatives
were tested. Whichever single weight change produced the greatest
reduction in the error was adopted and the process repeated. Error
was measured as Kullback-Leibler divergence at the output layer. The
sphere radius was 0.001. The training corpus for Language 1 consisted

1045-9227/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 2, MARCH 2003 445

TABLE I
STATE-GROWTH RATES FORSEVERAL LANGUAGES. “STATE-GROWTH” IS THE MINIMAL NUMBER OF STATES A SYSTEM MUST DISTINGUISH IN ORDER TO

CORRECTLY PROCESSALL GRAMMATICAL STRINGS OFLENGTH� L (FOR THOSEL FOR WHICH SUCH STRINGSEXIST).wW IS THE LANGUAGE IN WHICH AN

ARBITRARY SEQUENCE OFWORDS, w = w w . . .w , MUST BE FOLLOWED BY A EQUAL-LENGTH SEQUENCE, W = W W . . .W , AND EACH

CORRESPONDENCEw $ W IS AN INSTANCE OFEITHER a $ A OR b$ B (A CROSSEDSERIAL DEPENDENCYLANGUAGE). wW IS IDENTICAL TO wW
EXCEPT THAT THE ORDER OF THEW s IS REVERSED(A PALINDROME LANGUAGE). “X% AT L � p ” M EANS THE NETWORK ACCURATELY

SPECIFIED X% OF THE WORD TRANSITIONS IN ALL SENTENCES UP TOLENGTH p

TABLE II
GRAMMARS 1 AND 2. EACH PRODUCTION IS ASSOCIATED WITH A PROBABILITY . PARENTHESES

DENOTE OPTIONAL CONSTITUENTS, WHICH OCCUR WITH PROBABILITY 0.2 IN EVERY CASE

TABLE III
PERFORMANCE ONTRAINING AND TESTSETS FOR THE TWOFLNNS.RMSE = Root Mean Squared Error.%Cor.= PERCENTCORRECT.N = THE NUMBER OF

NETWORKSTHAT CONTRIBUTED TO THECOMPUTATION OF STANDARD ERROR(SE).Npoints= THE NUMBER OF WORDSTESTED PERNETWORK

of one instance each of all sentences of length� 9; for Language 2,
one each of length� 6.3 From the corpus distributions, we derived
the word-to-word transition probabilities for the training corpora
and used these as the targets on the output layer. The networks were
trained until their mean error per word on the training corpus dropped
below 0.001 or the gradient became so shallow that it appeared flat in
single-precision floating point.

B. Training Results

The testing corpus consisted of all sentences of length 12 to 15 words
from Language 1 and all sentences of length eight to ten words from
Language 2 (i.e., novel sentences with� 5 levels of recursion for each).
I tested all sentences within a short depth range in order to find out how
close to perfectly implementing the recursive structure the nets were
coming on a corpus of manageable size. Nine out of the 15 of the Lan-
guage 1 networks and 11 out of the 15 Language 2 networks learned
successfully in the sense that they achieved 100% accurate specifica-
tion of the training corpus distribution. Table III shows that the suc-
cessful networks also made very few incorrect transitions on the test
sets.

C. State-Space Analysis

Fig. 1 shows the stages the FLNN goes through. It was generated
using the weights of a typical FLNN near the beginning, middle, and
end of training, by plotting all first-hidden-layer states the FLNN vis-
ited while processing sentences involving eight or fewer stack pushes
and no stack pops. The figure shows how stack information is stored by

3Similar results were obtained when the training sentences formed an unbi-
ased sample from the grammar-defined corpus distribution of each language,
but convergence was slower.

(a)

Fig. 1. Separation of branches in the FLNN during the course of learning.
(a) 1000 iterations.~z = is the first hidden layer activation vector. It

is set to at the start of each sentence. Network states are at the tips of
downward-pointing triangles. Approximately-horizontal stripes mark the “a”
branch and approximately-vertical stripes mark the “b” branch.

the network while ignoring, for the moment, its retrieval. At the start of
training, the input-to-hidden weights were set to 0 so only the hidden
state 0

0
was visited. After a small amount of training, the set of visited

points has expanded into an infinite lattice [Fig. 1(a)]. There is much
overlap between points associated with the transition [0.2 a, 0.8 b,

446 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 2, MARCH 2003

(b)

(c)

Fig. 1. (Continued.) Separation of branches in the FLNN during the course
of learning. (b) 10 000 iterations. (c) 51 174 iterations (the end of training).
~z = is the first hidden layer activation vector. It is set to at the
start of each sentence. Network states are at the tips of downward-pointing
triangles. Approximately-horizontal stripes mark the “a” branch and
approximately-vertical stripes mark the “b” branch.

0.0 c] (the “a-branch”) and points associated with [0.2 a, 0.0 b, 0.8 c]
(the “b-branch”).4 These points must be separated in order for the net-
work to correctly distinguish the states [12]. As training proceeds, the
lattice becomes a bounded fractal, and its branches spread apart [Fig.
1(b)], eventually separating [Fig. 1(c)]. What is not shown in Fig. 1
is the pop-set (i.e., the set of states that the net inhabits after a series
of pushes and exchanges followed by one or more pops). At the end of
training, this set is similar to Fig. 1(c), but it is somewhat displaced from
it, because the learning process did not perfectly succeed in making the
pops invert the pushes. Such imbalance is the source of the errors that
the FLNNs make on the testing sets.

4In [0.2 a, 0.8 b, 0.0 c], the decimal numbers indicate probabilities and the
letters identify next-words.

IV. CONCLUSION

To our knowledge, these results constitute the first case in which
an exponential stack-growth languages have been accurately induced
by a neural gradient-following mechanism. The hidden unit analysis
suggests that the network, like a PDDA, is using a fractal to organize
its recursive computations. Shortcomings of the method are that the
computations are intensive, and nonlocal in time and space. A topic
for future work is to test the network on other types of infinite-state
languages—e.g., languages involving ambiguity. An advantage of the
method is that it couples an effective solution with insight into neural
representation. It suggests that techniques in fractal geometry may be
useful in developing an analytic understanding of neural learning at the
topological, as opposed to the metric, scale.

REFERENCES

[1] H. T. Siegelmann,Neural Networks and Analog Computation: Beyond
the Turing Limit. Boston, MA: Birkhäuser, 1999.

[2] J. Wiles and J. Elman, “Landscapes in recurrent networks,” inProc.e
17th Annu. Cognitive Science Conf., J. D. Moore and J. F. Lehman, Eds.,
1995.

[3] P. Rodriguez and J. Wiles, “Recurrent neural networks can learn to
implement symbol-sensitive counting,” inAdvances in Neural Infor-
mation Processing Systems 10, M. Jordan, M. Kearns, and S. Solla,
Eds. Cambridge, MA: MIT Press, 1998, pp. 87–93.

[4] M. Bodén and J. Wiles, “Context-free and context sensitive dynamics in
recurrent neural networks,”Connection Sci., vol. 12, no. 3, pp. 197–210,
2000.

[5] F. A. Gers and J. Schmidhuber, “LSTM recurrent networks learn simple
context-free and context-sensitive languages,”IEEE Trans. Neural Net-
works, vol. 12, pp. 1333–1340, Nov. 2001.

[6] P. Rodriguez, “Simple recurrent networks learn context-free and con-
text-sensitive languages by counting,”Neural Comput., vol. 13, no. 9,
2001.

[7] M. Bodén and J. Wiles, “On learning context-free and context-sensitive
languages,”IEEE Trans. Neural Networks, vol. 13, pp. 491–493, Mar.
2002.

[8] W. Tabor, “The value of symbolic computation,”Ecol. Psych., vol. 14,
no. 1/2, pp. 21–52, 2002.

[9] M. Barnsley,Fractals Everywhere. Boston, MA: Academic, 1988.
[10] C. Moore, “Dynamical recognizers: Real-time language recognition by

analog computers,”Theoretical Comput. Sci., vol. 201, pp. 99–136,
1998.

[11] P. Tiňo, “Spatial representation of symbolic sequences through itera-
tive function systems,”IEEE Trans. Syst., Man, Cybern. A, vol. 29, pp.
386–392, July 1999.

[12] W. Tabor, “Fractal encoding of context-free grammars in connectionist
networks,”Expert Systems: Int. J. Knowledge Eng. Neural Networks,
vol. 17, no. 1, pp. 41–56, 2000.

[13] S. Hölldobler, Y. Kalinke, and H. Lehmann, “Designing a counter:
Another case study of dynamics and activation landscapes in recurrent
networks,” inAdvances in Artificial Intellegence. Berlin, Germany:
Springer, 1997, pp. 313–324.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

