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We suggest that the theory of dynamical systems provides a revealing
general framework for modeling the representations and mechanism under-
lying syntactic processing. We show how a particular dynamical model, the
Visitation Set Gravitation model of Tabor, Juliano, and Tanenhaus (1997),
develops syntactic representations and models a set of contingent frequency
effects in parsing that are problematic for other models. We also present new
simulations showing how the model accounts for semantic effects in parsing,
and propose a new account of the distinction between syntactic and seman-
tic incongruity. The results show how symbolic structures useful in parsing
arise as emergent properties of connectionist dynamical systems.

I. INTRODUCTION

The Dynamics of Sentence Processing

Linguistic input is typically consistent with multiple syntactic possibilities as it unfolds
over time. Because syntax strongly constrains interpretation, the processing system must
determine the set of possible syntactic hypotheses, maintain some or all in memory, and
update them as new input arrives.

Behavioral evidence from sentences with temporary syntactic ambiguities has clearly
established that readers and listeners have strong preferences for some structures over
others. When subsequent input becomes inconsistent with the preferred structure, pro-
cessing difficulty ensues. Patterns of processing difficulty for these “garden-path” sen-
tences taken primarily from reading experiments provide an empirical benchmark for
evaluating theories of syntactic processing (see Tanenhaus & Trueswell, 1995).
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Within traditional symbolic systems, syntactic hypotheses are computed by a parser—a
set of procedures that maps the input onto partial syntactic structures using categories such
as Noun and Noun Phrase utilizing a knowledge base defined by a grammar. Explanations
for structural preferences are typically couched in terms of the complexity of structure
building operations, and/or memory demands in an initial stage of structure building (see
Frazier & Clifton, 1996; Gibson, 1998, for recent reviews). A second set of procedures
guides recovery from misanalysis when the initial structure is disconfirmed.

However, recent evidence indicates that syntactic processing is simultaneously affected
by multiple sources of constraints, including semantic and discourse-based information
(for reviews see MacDonald, Pearlmutter, & Seidenberg, 1994; Tanenhaus & Trueswell,
1995). Moreover, reading time is correlated with graded properties of the linguistic input
not easily reduced to purely structural factors, such as the relative frequency with which
lexical forms occur in different environments (MacDonald et al., 1994; Trueswell, 1996).
Models in which multiple sources of constraint provide weighted evidence for competing
syntactic analyses provide a natural account of these phenomena (Cottrell, 1985; Cottrell
& Small, 1984; MacDonald et al., 1994; Spivey-Knowlton, 1996; St. John & McClelland,
1990; Waltz & Pollack, 1985). Processing difficulty occurs when input that is inconsistent
with the previously biased alternative is encountered.

Connectionist models are a variety of constraint-based models in which learning plays a
central explanatory role. In connectionist models of parsing, some of the systematic properties
of language which motivate the positing of specialized structures in a symbolic paradigm are
hypothesized to arise as “emergent properties” under connectionist learning. Crucially, the
emergent counterparts of symbolic structures may differ from them in important ways.

However, much previous connectionist modeling of syntactic structures has been
inexplicit about what these emergent structures are and how, exactly, they differ from their
symbolic counterparts. Following Tabor, Juliano, and Tanenhaus (1997), we argue that a
connectionist, learning-based system can be explicit about “emergent properties” by using
the constructs ofdynamical systems theory, a theory commonly applied to dynamically
changing natural systems such as swinging pendulums, orbiting planets and circulating
fluids. Constructs useful in analyzing such systems include trajectories, fixed points (or
stable states), attractors, basins, and saddlepoints (see Abraham & Shaw, 1984, and
Strogatz, 1994 for introductions). The model we describe here has two components: a
network similar to a Simple Recurrent Network or “SRN”, (Elman, 1990, 1991) and a
dynamical gravitation module.

The input to the network component is a sequence of words generated by a probabilistic
finite state or context free grammar. As it learns to process the input, the model forms
representations of parse states in its hidden unit space, placing words that are likely to be
followed by similar constructions nearby one another (Christiansen, 1994; Elman, 1990,
1991; Tabor, 1994). Thus, the learning process strongly influences the final performance
of the system (Christiansen, 1994; Christiansen & Chater, 1999a; MacDonald & Chris-
tiansen, 1998).

The gravitation module is a dynamical processor which transforms the representations
produced by the SRN into unique parse hypotheses, requiring varying amounts of time to
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do so. The model’s processing time is taken as an analog of human reading time. The
dynamical component operates on the set of states visited by the network when it is
processing a large random sample of text. It uses a gravitational mechanism to group these
into distinct classes, thus providing useful structural information about the SRN’s repre-
sentation. Thus, we refer to the model as theVisitation Set Gravitation(or VSG) model.

II. THE VSG MODEL AND RELATED DYNAMICAL MODELS

The VSG Model

The network and training procedure were closely modeled on Elman (1991). Each word
in a corpus was assigned a unique localist vector (one element was equal to 1 and all the
others were equal to 0). Vectors were presented on the input layer of the network in the
order in which the corresponding words occurred in the training corpus. The network was
trained using the backpropagation algorithm (e.g., Rumelhart, Hinton, & Williams, 1986)
to predict on the output layer which word was coming next for each input. We used a
three-layer feed-forward network with a “context layer” feeding into the hidden layer at
each timestep (Elman, 1991). This network has the same relaxation dynamics as a three
layer network with complete interconnection among its hidden units (on the assumption
that each unit is updated exactly once each time a word is presented, with the input and
context units updated first, then the hidden units, and then the output units). Thus, the
training procedure is an approximation of the Backpropagation Through Time (BPTT)
algorithm (Rumelhart et al., 1986).) Error propagation was carried through two hidden-
layer time steps while adjusting input-to-hidden weights only on the basis of the current
time step (see Figure 1). The network had 37 input units, 10 hidden units, and 37 output
units. The hidden units at all time steps had fixed sigmoid activation functions (yi 5

Figure 1. Three layer network with recurrent connections in the hidden layer (implemented as partial
unfolding across time).
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1/(1 1 e2neti) whereneti is the net input to uniti ). The output units as a group had
normalized exponential (or softmax) activation functions (yi 5 eneti/¥ j[Outputse

netj). The
output error for inputp was thus defined for “1-of-n” classification by Equation (1).

Ep 5 log P
j[Outputs

yj
tj (1)

whereyj is the activation of unitj for input p, andtj is the target for unitj on that input,
(Rumelhart, Durbin, Golden, & Chauvin, 1995) and backpropagated through the unfolded
network.1 Weights were adjusted after every input presentation. The network was trained
on the output of a simple grammar approximating relevant features of the phenomenon to
be modeled. The details of training are described in Section 3.

The gravitation module of the VSG operates on the hidden layer representations of the
trained SRN. The SRN places words in contexts with similar distributional characteristics
near one another in the hidden unit space. Thus, if we sample the hidden unit activations
of the trained network over a wide range of constructions from the training language, we
may find a set of clusters of points, where points in the same cluster correspond to
grammatically equivalent states of the generating language. The gravitation module is a
clustering mechanism which finds such equivalence classes of states. The trained network
was presented with a large random sample of sentences generated by the grammar. All the
hidden unit states visited during processing were recorded. Each point was treated as a
massive body in the 10-dimensional hidden unit space. Each such massive body had a
mass of one unit and was fixed in its position. The processing of a particular word-in-
context was tested by treating its hidden unit location as a test mass (also of unit
magnitude) which was free to move under the gravitational influence of all the fixed
masses. Typically, the test mass was near the center of mass of some dense cluster and
would gravitate into that cluster. We modeled processing time as the time required to
gravitate into the cluster. The fixed masses can be thought of as representing typical
previous experiences with the language. Thus, the gravitational mechanism implements
the idea that, in responding to a new instance of a word-in-context, the processor
analogizes that word-in-context to its previous experiences and gravitates to a cluster
corresponding to the most-similar previous experience. The points or small regions in the
centers of the clusters where the system is stable are calledattractors. The set of all
starting points from which the system gravitates into a particular attractor is called its
basin. Under an appropriate parameterization of the gravitational system, the system’s
basin structure defines a partition of the set of words-in-context into equivalence classes.
In the cases we analyzed, these classes corresponded to states of the grammar (Hopcroft
& Ullman, 1979) that generated the training data.

The change in position of the test mass was defined by Equation (2).

Dx

Dt
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wherexW is the position of the test mass,N indexes the fixed masses,xW i is the position of
the i ’th fixed mass,r i is the Euclidean distance betweenxW i and xW at time t, andp is a
gravitational strength parameter which determines the pulling power of each test mass.
This equation is an approximation of Newton’s Law of Universal Gravitation when (i) the
test mass starts with zero velocity at infinite distance from the starting point, (ii)p 5 2,
and (iii) n is the Universal Gravitation Constant.

Equation 2 implies that every point in the visitation set is a singular point (i.e., a point
where the velocity goes to infinity). To avoid infinite velocities, which make the structure
of the system hard to detect, we introduced a thresholdrmin and setr i 5 rmin whenever
r i became smaller thanrmin. This made the trajectories less prone to wild jumps. The
parameters,N, n, rmin, Dt, andp are all free parameters of the model. The first four of
these are primarily relevant to making the performance of the model easy to interpret.2

The last one, (p, or gravitational strength), is undesirably unconstrained—we set it to a
value that made the attractor basins correspond to distinct parse states as defined by the
training grammar. Fortunately, this parameter narrows the range of possible basin struc-
tures to a relatively small set. Because the parameter is closely tied to the constraints on
learning there may be a way to bind it less stipulatively. Under these assumptions, the test
mass typically sped up as it approached a fixed point near the center of mass of a cluster,
overshot the fixed point (because it is unlikely that the mass will land exactly on a fixed
point for positiveDt), and then headed back toward the center of mass for another
“fly-by”. Our algorithm for determining gravitation times thus computed the number of
steps it took the test mass to reverse direction for the first time (where a direction reversal
is a turn of more than 90° in one step). Note that the gravitation module operates
completely independently of the recurrent network: the outcome of the relaxation dynam-
ics does not affect the network’s processing of the subsequent word.

In sum, the VSG model is trained like an SRN. It generates predictions of reading times
as follows:

1. Feed a sentence one word at a time to the trained network using SRN relaxation
dynamics.

2. For each word of the sentence, use the gravitation module to determine a gravitation
time.

3. Compare gravitation time profiles (e.g., across words in a sentence) to reading time
profiles.

Previous Related Models

In order to motivate the VSG model, we will briefly review previous related models. Most
connectionist models are standard dynamical systems: their operation can be described by
a differential equation for which the state change is a continuous function of the
parameters (or weights) of the network. One can distinguish two important dynamical
regimes within the connectionist framework: learning dynamics, and relaxation dynamics.
Learning dynamics involve slow adjustment of connection weights to find the minimum
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of a cost function. Relaxation dynamics involve rapid adjustment of activation values in
order to compute an output. In the VSG model, relaxation dynamics (albeit in a non-
connectionist system) reveal structural properties of the learning dynamical system for one
type of network (the SRN).

The first connectionist processing models (e.g., Cottrell, 1985; Cottrell & Small, 1984;
Waltz & Pollack, 1985) focused on the relaxation dynamics of hand-designed models
using localist representations. These models had many of the properties we make use of
here. For example: 1) Competition between simultaneously valid parses increased pro-
cessing time. 2) Magnitudes of real-valued weights reflected contrasts in frequency and
thus gave rise to biases in favor of more frequently-encountered interpretations (e.g.,
Cottrell & Small, 1984). 3) Sometimes, “spurious” attractive states arose which corre-
sponded to no interpretation (e.g., Cottrell & Small, 1984). In the Emergence of a
Syntax/Semantics Distinction Section we show that certain “spurious states” may provide
a plausible model of parsing of an ungrammatical string (cf. Plaut, McClelland, Seiden-
berg, & Patterson, 1996). 4) Syntactic and semantic information simultaneously con-
strained parsing (e.g., Cottrell & Small, 1983).

The development of the backpropagation algorithm (Rumelhart et al., 1986) led to a
new class of learning-based connectionist parsing models. Currently, the most successful
models are Elman’s SRN (Elman, 1990, 1991) and its variants (e.g., St. John & McClel-
land, 1990—see Christiansen & Chater, this issue, for a review). Elman’s model can
approximate the word-to-word transition likelihoods associated with a simple text corpus,
thus embodying information relevant to the syntax and semantics of the language of the
corpus to the degree that these are reflected in distributional properties.

While the learning dynamics of Elman’s model are complex and interesting, the
relaxation dynamics are uniform and uninformative. Since each node is updated exactly
once after a word is presented, the network’s processing time is identical from word to
word and cannot plausibly be interpreted as a model of human processing time. Several
researchers (Christiansen & Chater, 1999a; MacDonald & Christiansen, in press) have
shown that a well-chosen definition of SRN output error can be mapped onto processing
times. A desirable next step is to model word-to-word processing explicitly in the
relaxation dynamics. Such explicitness is one goal of the VSG approach.

Moreover, as in many connectionist simulations, the principles governing the Elman
model’s specific predictions are not usually easy to surmise: the trained network’s model
of its environment is a complexly shaped manifold in a high-dimensional space. Although
1-dimensional quantities such as error measures and cost functions can give insight into
local properties of this manifold, they do not tell us much about its structure. A useful
addition would be some summarizing category information, indicating which pieces of the
manifold are important, and what role they play in organizing the linguistic task. Thus, a
second aim of the VSG approach is to use dynamical systems theory to reveal this
summarizing category information by approximating certain basins, attractors, saddle-
points etc. which are implicit in the SRN’s learning dynamics. For example, as we noted
above, the attractors of the VSG model map onto distinct parse states of the language
learned by the network (see The Gravitation Mechanism Section).
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Although, the VSG model is inelegant in that it is a hybrid of two distinct dynamical
systems, we view it is a useful stepping stone to a more mathematically streamlined and
more neurally plausible model. In particular, the dynamics of the gravitation module are
roughly paralleled by the dynamics of recurrent connectionist networks which settle to
fixed points after each word presentation. In current work, we are exploring the use of the
recurrent backpropagation (RBP) algorithm (Almeida, 1987; Pineda, 1995) to train such
networks on sentence processing tasks. In these models, the learning process drives the
formation of attractor basins, so the free parameterp is eliminated and the categorization
system stems from independently motivated constraints such as the number of hidden
units and the nature of the activation function. However, the task of learning complex
syntax in an RBP network is harder. Thus, an advantage of the VSG model is that it
permits us to use the currently more syntactically capable SRN to explore the effective-
ness of dynamical constructs. If the predictions are borne out, then the motivation for
solving the learning challenges facing RBP becomes greater.

Although the attractor basins defined by the VSG model are primarily valuable for the
insight they provide into the representations learned by an SRN, they also have an
independent functional motivation. Interpreting language probably requires making some
discrete choices. For example, Waltz and Pollack (1985) note that although we can
comprehend the multiple meanings of wholly ambiguous sentences (e.g.,Trust shrinks;
Respect remains; Exercise smarts—p. 52) we seem to flip-flop between them rather than
comprehend them as a single composite. Moreover, it is clearly important to be able to
conclude that in a sentence likeJack believed Josh was lying, Joshis not an object of the
matrix clause but a subject of the embedded clause, even though processing evidence
suggests that we temporarily entertain the former hypothesis. It is not obvious how to map
the real-valued states of an SRN onto representations that could support such discrete
choices. The VSG model provides a principled solution to this problem.3

Previous VSG Results

Focusing on the interaction between lexical and syntactic category ambiguity, Tabor,
Juliano, and Tanenhaus (1997) showed that the VSG model predicts word-by-word
reading times for phenomena that are challenging for other models, For example, lexical
category ambiguities involving the word “that”, exhibit an interesting mix of contingent
frequency effects (Juliano & Tanenhaus, 1993; Tabor et al., 1997). The sentences in (1)
illustrate that “that” can be either a determiner (a and c) or a complementizer (b and d).
The number of the noun disambiguates “that” as either a determiner (singular) or a
complementizer (plural).

(1) a. That marmot whistles.
b. That marmots whistle is surprising.
c. A girl thinks that marmot whistles.
d. A girl thinks that marmots whistle.

Reading times for these sentences are predicted by the hypothesis that readers slow
down when they encounter words that violate their expectations about typical usage, as
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determined from a corpus analysis. In particular, “that” is more frequent as a determiner
than as a complementizer sentence-initially, but it is more frequent as a complementizer
than as a determiner post-verbally. Thus, (1a) is easier than (1b), while (1c) is harder than
(1d) at the words following “that” (see Tabor et al., 1997, for details). The VSG model
predicts these effects because the denser visitation clusters associated with more-frequent
continuations give rise to stronger gravitational pull and hence more rapid gravitation.
However, the correlation between expectancy and reading time is also skewed by category
structure. For example, after strictly transitive verbs likevisited, that and a following
adjective (2a) was read more slowly thanthoseand a following adjective (2b) even though
these two determiners occur equally frequently after transitive verbs.

(2) a. The writer visited that oldcemetery.
b. The writer visited those oldcemeteries.

Attractor competition also predicts these results.That following a transitive verb bears
a distributional resemblance tothat following a sentence-complement verb. Therefore, the
position assigned by the recurrent net tothat following a transitive verb is intermediate in
the gravitation field between the attractor forthat following a sentence-complement verb
and the attractor for unambiguous determiners following transitive verbs. By contrast,
since thoseis not ambiguous,thosefollowing a transitive verb starts very close to the
appropriate attractor. Sincethat starts farther away from the attractor and its gravitation
is slowed by the presence of a nearby attractor, it is processed more slowly thanthose
(Tabor et al., 1997).

These cases illustrate two advantageous properties of the VSG model: 1) it is consistent
with the pervasive evidence showing that reading time is inversely correlated with class
frequency; and 2) it diverges appropriately from the frequency-based predictions in cases
where class similarity effects distort these. The VSG model predicts the latter,smoothing
effects by letting similarities between categories distort the internal structure of the
attractor basins associated with the categories. While, it is possible that a similar predic-
tion can be made by a model that computes expectations based on a probabilistic grammar
(e.g., Jurafsky, 1996), some kind of as-yet-unspecified statistical smoothing (Charniak,
1993) across grammatical classes is required. It is also possible that a model which treats
reading time as a kind of output error in an SRN (e.g., MacDonald & Christiansen, in
press) would predict divergences from frequency-based predictions due to class similarity
since position contrasts in the hidden unit space tend to map to position contrasts in the
output space. But, because one-dimensional measures do not encode information about
direction of displacement, it would be difficult to tell whether similarity is indeed the
source of the error.

III. CASE STUDY: THEMATIC EXPECTATION

The Tabor et al. (1997) simulations focused primarily on syntactic contrasts in that the
complement requirements of the verbs and the agreement requirements of the determiners
were categorical. The simulations presented here investigated the less categorical cases
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that arise in association with “semantic” distinctions. Thematic role assignment is a clear
example. Almost any noun can fill any role, but if a noun that is unsuitable for a given role is
forced to play that role, the result is a “semantically strange” or “incongruous” sentence (3).

(3) a. # The waitress was served by the jukebox.
b. # The car accused the pedestrian of cheating.

Linguistic theories generally posit distinct mechanisms for explaining semantic and
syntactic incongruity. Semantic incongruity is detected using world knowledge, whereas
syntactic incongruity results from violating rules of grammar. Psychophysiological data
from studies using event-related potentials suggesting that these two kinds of violations
may result in qualitatively different patterns of brain responses (Ainsworth-Darnell,
Shulman, & Boland, 1998; Garnsey, 1993; Hagoort, Brown, & Groothusen, 1993; Oster-
hout & Holcomb, 1993).

The distinction between syntactic and semantic incongruity is especially interesting
from the perspective of connectionist models. Since both semantic and syntactic con-
straints affect the distributional structure of words, a connectionist device trained on
distributional information might be able to model both classes of constraints. Weckerley
and Elman (1992) showed plausible “semantic” influences on the processing of center-
embedded constructions in such a model, although they did not analyze the mechanism.
Here we analyze the VSG model’s representation, showing that it exhibits what might best
be called agraded qualitative distinctionbetween semantic and syntactic incongruity.

The claim that “semantic” information can be learned by a model which only interacts
with corpus data needs to be qualified. Clearly, a model without an extra-linguistic world
cannot simulate the relationship between language and the extra-linguistic world, and thus
cannot be a fullsemantic model. However, corpora contain a good deal of information
beyond what the syntax of a language provides. Indeed, Burgess & Lund (1997) and
Landauer & Dumais (1997) among others have shown that information which is stan-
dardly termed “semantic” can be extracted from a corpus by evaluating co-occurrence
statistics. Much of this information is about which wordstendto be used in combination
with which other words. The usual strategy in linguistic modeling is to assume that
knowledge about language does not incorporate knowledge of the world that can be
learned independently of language. But this may be misguided: since information about
tendencies of usage is available in the input, the “language mechanism” may be shaped by
this usage as well as by abstract grammatical constraints.

We examined the role of thematic fit in syntactic ambiguity resolution, focusing on the
results of McRae, Spivey-Knowlton, & Tanenhaus (1998).

The Phenomenon

McRae et al. used sentences such as: (4a) and (4b).

(4) a. The cop / arrested by / the detective / was guilty / of taking / bribes.
b. The crook / arrested by / the detective / was guilty / of taking / bribes.
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Similarity ratings, (e.g., How common is it for a cop to arrest someone?) were used to
group “cop” and similarly rated nouns together as “Good Agents” and “crook,” and
similarly rated nouns together as “Good Patients”. Good Agents provide initial support for
the main clause hypothesis at the first verb (e.g., “arrested”), whereas Good Patients
provide support for a reduced relative hypothesis. Figure 2 summarizes the results from
a self paced reading study using sentences like those in the example. The “reduction
effect” is the difference between the reading time of sentences like (4) and the corre-
sponding unreduced (unambiguous) cases in which “who was” was inserted before the
first verb. The regions were the pairs of words between slashes.

Three properties of the data are worth highlighting. 1) There is an immediate effect of
thematic bias: in the verb1“by” region, the Good Patients give rise to higher reading times
than the Good Agents. 2) Reading times are longer where there is a conflict between the
biases of the preceding context and the biases of the current word, e.g., at the (agentive)
verb after a Good Patient subject, and at the NP following a Good Agent subject and verb.
3) Reading times show an “inertia” effect. Even when the linguistic input provides
information that could, in principle be used to strongly reject a previously entertained
parse, (e.g., the word “by” after the verb), the processor seems to shift only gradually over
to the new hypothesis.

McRae et al. showed that the reading time profiles can be plausibly interpreted as
stemming from competition between two alternative syntactic hypotheses: 1) the first verb
(e.g., “arrested”) is the main verb of the sentence, or 2) it is a verb in a reduced relative
clause. For Good Patients, there is competition between these two hypotheses beginning
at the first verb, which resolves quickly when supporting evidence for the reduced
relatives comes from the “by”-phrase. For the Good Agents there is a strong initial bias

Figure 2. Crossed and smoothed latencies in the main clause/reduced relative ambiguity (after McRae
et al. (in press)). The “X” sentences began with “Good Agents”; the “O” sentences began with “Good
Patients”.
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for the main clause, with competition beginning when disconfirming information is
encountered in the “by-phrase”.

McRae et al. formalized the competition account by using Spivey-Knowlton’s (1996)
Normalized Recurrence algorithm, in which multiple constraints provided support for two
competing structures: main clause and reduced relative. The strength of the constraints
was determined by norms and corpus analysis. The weights were free parameters set to
model fragment completion data using the same materials. The same weights were then
used to successfully predict on-line reading times. In the simulation described next we
show that competition, lexical sensitivity, and inertia emerge in a VSG model trained on
corpus data resembling the significant distributional properties of the McRae et al.
materials.

Simulation

The Training Grammar.The simulation grammar shown in Table 1 generates a simple,
symmetrical set of strings which share a number of properties with the English sentences
of interest. The labels in the grammar and in the following discussion (e.g., “Good Agt”,
“Good Pat”) make this analogy explicit for the convenience of the reader. However, the
analogy is rough, and the model is not intended to map precisely onto human behavior.
Instead, we view the study of formally simple grammars like this as a useful tool for
gaining insight into the behavior of a connectionist network that shares a number of
interesting properties with humans.

The first two words of each sentence in the grammar can be classified as belonging to
one of two classes, X and Y, which give rise to different expectations about which words
are likely to occur next. X and Y correspond to “Good Agent” and “Good Patient”
respectively. Sentences starting with X’s outnumber sentences starting with Y’s by a ratio
of 2:1, reflecting the greater frequency of agentive constructions in English. Also, as in
English, there are initial X’s and initial Y’s of a range of different frequencies. The second
word is of the type labeled V. It corresponds conceptually to the English verbs in McRae
et al.’s study in the following way: both X’s and Y’s are followed by the same set of Vs,
but, depending on which first word and V occurred, there is a bias as to how the sentence
will end. Sentences that begin with X words and are followed by V words with letter labels
alphabetically close to “a” tend to end with the most common members of the X2 and X3
categories (ignoring, for a moment, the words with “1” in their labels). Sentences that
begin with Y and are followed by V’s with letter labels alphabetically close to “f” tend to
end with the most common members of the Y2 and Y3 categories. In fact, the members
of the categories X2 and Y2 are the same, as are the members of the categories X3 and
Y3, but if the generating category is X2 or X3, then there is a bias toward words with
labels alphabetically close to “a”, and if the generating category is Y2 or Y3, there is a bias
toward words with labels alphabetically close to “f”. The word “p” is an end-of-sentence
marker, or “period”.

The non-absolute biases of many of the words in this grammar mirror the fact that in
natural language, many words can be constituents of many constructions and thus do not
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provide a categorical signal, independent of their context, as to which parse hypothesis is
correct; but many of these same words have statistical tendencies which can be used to
compute a bias toward one construction or another in the absence of a fully constraining
context. In the model, the local ambiguity of the words is essential for predicting inertia
effects: it forces the network to use its context representation to compute expectations. As
a result, the network tends to retain the parse bias it had at earlier stages, only relinquish-
ing it gradually.

There are, however, some words in natural languages, the “closed class” or “function”
words that provide fairly unambiguous cues as to which parse hypothesis is correct. The
word “by” is one such word in the McRae et al. materials. Here, the members of the 1
category provide this kind of categorical constraining information. “1a” through “1c” are
only compatible with an X2 X3 ending, while “1d” through “1f” are only compatible with
a Y2 Y3 ending. Note that both X and Y initial words can be followed by both kinds of

TABLE 1
Training Grammar for the Thematic Bias Simulation

0.67 S3 X VX VPX p (“MC”)
0.33 S3 Y VY VPY p (“RR”)
0.67 X3 xa (“Good Agt”) 0.02 Y3 ya (“Good Pat”)
0.17 X3 xb (“Good Agt”) 0.03 Y3 yb (“Good Pat”)
0.07 X3 xc (“Good Agt”) 0.04 Y3 yc (“Good Pat”)
0.04 X3 xd (“Good Agt”) 0.07 Y3 yd (“Good Pat”)
0.03 X3 xe (“Good Agt”) 0.17 Y3 ye (“Good Pat”)
0.02 X3 xf (“Good Agt”) 0.67 Y3 yf (“Good Pat”)
0.67 VX3 xa (“MC Bias Verb”) 0.02 VY3 va (“RR Bias Verb”)
0.17 VX3 vb (“MC Bias Verb”) 0.03 VY3 vb (“RR Bias Verb”)
0.07 VX3 vc (“MC Bias Verb”) 0.04 VY3 vc (“RR Bias Verb”)
0.04 VX3 vd (“MC Bias Verb”) 0.07 VY3 vd (“RR Bias Verb”)
0.03 VX3 ve (“MC Bias Verb”) 0.17 VY3 ve (“RR Bias Verb”)
0.02 VX3 vf (“MC Bias Verb”) 0.67 VY3 vf (“RR Bias Verb”)
0.67 VPX3 1a X2 X3 (“MC”) 0.02 VPY3 1a X2 X3 (“MC”)
0.17 VPX3 1b X2 X3 (“MC”) 0.03 VPY3 1b X2 X3 (“MC”)
0.07 VPX3 1c X2 X3 (“MC”) 0.04 VPY3 1c X2 X3 (“MC”)
0.04 VPX3 1d Y2 Y3 (“RR”) 0.07 VPY3 1d Y2 Y3 (“RR”)
0.03 VPX3 1e Y2 Y3 (“RR”) 0.17 VPY3 1e Y2 Y3 (“RR”)
0.02 VPX3 1f Y2 Y3 (“RR”) 0.67 VPY3 1f Y2 Y3 (“RR”)
0.67 X23 2a (“MC”) 0.02 Y23 2a (“RR”)
0.17 X23 2b (“MC”) 0.03 Y23 2b (“RR”)
0.07 X23 2c (“MC”) 0.04 Y23 2c (“RR”)
0.04 X23 2d (“MC”) 0.07 Y23 2d (“RR”)
0.03 X23 2e (“MC”) 0.17 Y23 2e (“RR”)
0.02 X23 2f (“MC”) 0.67 Y23 2f (“RR”)
0.67 X33 3a (“MC”) 0.02 Y33 3a (“RR”)
0.17 X33 3b (“MC”) 0.03 Y33 3b (“RR”)
0.07 X33 3c (“MC”) 0.04 Y33 3c (“RR”)
0.04 X33 3d (“MC”) 0.07 Y33 3d (“RR”)
0.03 X33 3e (“MC”) 0.17 Y33 3e (“RR”)
0.02 X33 3f (“MC”) 0.67 Y33 3f (“RR”)

Note. MC, Main Clause; RR, Reduced Relative. The quoted labels specify the analogy with English.
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endings, but there is a bias for X initial words to be followed by X2 X3 endings and for
Y initial words to be followed by Y2 Y3 endings.

Training the Network.The grammar was used to generate data for training the network
described in the VSG Model Section. Before training began, the weights and biases of the
network were assigned uniformly distributed random values in the interval [20.5, 0.5].
The network’s learning rate was set at 0.05 and momentum was not used. The grammar
defines ten states (states are distinct if they induce different distributions over the set of
all possible future sequences—Crutchfield, 1994; cf. Hopcroft & Ullman, 1979). The
network was trained until it was distinguishing and reasonably approximating the transi-
tion likelihoods of all ten states. The grammar sanctions 123 64 5 15552 grammatical
strings. Each juncture-between-words in a string is associated with a probability distri-
bution over next-words which can be computed from the grammar. We compared the
network’s output for each juncture to the grammar-generated distribution for that juncture
and asked if the distance between these two distributions was less than one half the
minimum distance between any two grammar-determined distributions.4 We stopped
training when a hand-picked sample of such comparisons yielded positive outcomes, and
then evaluated this comparison for the whole language to find that the comparison yielded
a positive outcome for 94% of the 155523 6 5 93312 junctures between words. At this
point, the network had been trained on 50,000 word presentations. We re-initialized the
weights and retrained the network five times for the same number of word presentations.
We determined by inspection that the visitation set had nearly identical (10-cluster)
structure in three out of the six cases, and similar structure in all cases. The results
reported below are based on the first case.

The Gravitation Mechanism.We set the gravitation module parameters ton 5 2000,
rmin 5 0.01,m 5 0.0002, andp 5 2.7. With these settings, the dynamical processor had
an attractor corresponding to each state associated with the training grammar. There were
two attractors associated with initial words, V words, 1 words, and 2 words. The attractors
corresponded to the X (“Main Clause”) reading and the Y (“Reduced Relative”) readings,
respectively, in that sentences with a high likelihood of finishing with letter labels
alphabetically near “a” were consistently drawn into the X attractor and those with a high
likelihood of finishing with labels near “f” were consistently drawn into the Y attractor.
There was one attractor for the 3 position and one for the end-of-sentence marker, “p”.

Reading Time Results

We compared the reading times on a Y (“Reduced Relative”) continuation for sentences
beginning respectively, with X (“Main Clause bias”) words and Y (“Reduced Relative
bias”) words. Because our grammar did not include the option of disambiguating the V
(“Verb”) word syntactically, prior to its occurrence (as in EnglishThe cop who was
arrested. . . ) wewere not able to use such disambiguated cases as a baseline. A sample
result is shown in Figure 3. The “Good Patients” curve shows word-by-word mean
gravitation times for eight sentences like “yd vc 1d 2d 3d p” (“Crook arrested by detective
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escaped.”), which start with a Y word (yd or ye), continue with an X-biased verb (vb or
vc), and finish with a type Y-ending (1d . . . or 1e . . . ); the“Good Agents” curve shows
word-by-word mean gravitation times for eight sentences like “xc vc 1d 2d 3d p” (“Cop
arrested by detective escaped.”), which start with an X-word (xb or xc) and continue with
the same possibilities as the “Good Patients” examples. The means are significantly
different across the two sentence types in word positions 2 (t(14) 5 46.09,p , .001),
3 (t(14) 5 241.55,p , .001), and 4 (t(14) 5 36.46,p , .001), but not inpositions
5 and 6 (t(14) 5 0). Successive means within each sentence type are also significantly
different in all cases except for the contrast between Word 3 and Word 4 in the “Good
Patient” sentences (t(14) 5 0.209,p . .6). Thepattern thus shows the central properties
of the human reading time data: 1) immediate effects of new information, even though the
information is merely semantically biasing (at the V word, for example, there is an effect
of the bias of the immediately preceding N word) 2) cross-over of the magnitudes of the
reading times during the course of the sentence (first the Y or RR-bias sentence shows a
spike in reading time; then the X or MC-bias sentence shows one), and 3) inertia in the
parse choice (each spike has a tail which dwindles over the course of several following
words).

Induction of Competition Effects.Examining the representations and the processing
dynamics of the VSG model, reveals that the model is predicting the human data by
implementing a competition mechanism very much like that used by McRae et al. (in
press).

Figure 4 provides a global view of the visitation set for the simulation. This image was
obtained by performing Principal Component Analysis (PCA) on the set of 2000 hidden
unit locations used in the gravitational model. PCA (Jolliffe, 1986) is a way of choosing
coordinate axes that are maximally aligned with the variance across a set of points in a

Figure 3. Gravitation times for the thematic bias simulation.
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space.5 It is used here simply as a way of viewing the visitation set, and plays no role in
the predictions made by the model.

The visitation set is grouped into major regions corresponding to the six major
categories of the grammar (initial word, V word, 1 word, 2 word, 3 word, and final word,
“p”). 6 Two of these categories overlap in the two-dimensional reduced image (“V” and
“2”), but they do not overlap in the 10-dimensional space. Several of the major regions
seem to have two distinct clusters within them in Figure 4. These correspond to the two
parse hypotheses, X (“Main Clause”) and Y (“Reduced Relative”).

To see this more clearly, it is helpful to zero in on one of the major clusters. Figure 5
shows a new PCA view of the points where the connectionist network places the system
when its input layer is receiving a V word (the new PCA is based on all and only the V
word points). Here, we can clearly see the two clusters corresponding to the X and Y
readings. These clusters give rise to two attractors which are at the centers of the circles
in the diagram.7

Three trajectories are shown corresponding to sentences which start “xc vc . . . ”, “yd
vc . . . ” and “yf vf . . . ”. The “xc vc . . . ” and “yf vf . . . ” cases, roughly analogous to
“cop arrested” and “evidence examined”, are the beginnings of normal sentences which
typically give rise to X (“Main Clause”) and Y (“Reduced Relative”) interpretations
respectively. The processor lands close to the appropriate attractor when the V word is
presented and gravitation takes only two time steps.8 By contrast, the sentence that starts
with “yd vc” (analogous to “crook arrested”) has conflicting information in it. The first
word (“yd”) indicates that the processor should favor the Y attractor, but the second word
(“vc”) is predominantly associated with an X continuation. As a result, the processor lands
in an intermediate position when the second word is presented. It gravitates to the X
attractor, but gravitation takes eight time steps.

Figure 4. Global view of the visitation set for the thematic bias simulation.
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Figure 6 (yet a different PCA) presents a close-up of the “1” region of the visitation set.
Here we can observe one-word continuations of the sentences shown in Figure 4. The case
of central interest is “xc vc 1d”. This case is analogous to a fragment like “Cop arrested
by . . . ”, which begins with a Good Agent followed by an agentive verb, but continues
with a “by”-phrase which strongly signals the unexpected Reduced Relative interpretation.
Recall that human reading times at the agentive noun phrase in the “by”-phrase were long
compared to when the sentence began with a Good Patient subject (e.g., “Crook arrested
by detective . . . ”). In thesimulation, the first word cuing the switch, namely “1d”, lands
the processor in an intermediate position and has a correspondingly long gravitation time
(13 time steps). The corresponding case, “yd vc 1d”, (“Crook arrested by . . . ”) produces
a nonminimal trajectory at “1d” as well, but the starting point is closer to the “Y” attractor
and the gravitation time is shorter (5 time steps). Thus, at the “V” words and “1” words,
the crossing latency pattern in McRae et al.’s data is reproduced. However, the simulation
shows the crossing pattern more immediately in response to the disambiguating informa-
tion than do the human subjects. This may be due to “by” being read parafoveally; it may
also reflect the more complex ambiguity of natural language “by”.

For comparison, Figure 6 also shows a case of gravitation to the “X” attractor in the “1”
region: the partial sentence, “yf-vf-1a” (presumably comparable to something like, “The
evidence examined him . . .”). The first two words strongly favor a “Y” (“Reduced
Relative”) continuation, whereas the third word requires an “X” (“Main Clause”) contin-
uation. Reading times are elevated at “1a” but not as elevated as they were for, “xc-vc-1d”.
This less elevated reading time occurs because the most recent biasing information (“1a”)
is such a strong piece of evidence for the “X” parse (high in frequency and strongly

Figure 5. Three trajectories in the “V” region. (The label “yc-vc” identifies the starting point of the
trajectory that ensued when “vc” had been presented on the input layer after “yc”. The numbers ‘1’, ‘2’,
‘3’, etc. proceeding from this label indicate the trajectory itself. The other labels have similar interpre-
tations.)
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correlated) that it overcomes the prior opposing bias more easily than the low-frequency,
weakly correlated “1d” in “xc-vc-1d”.

The competition effects we have illustrated occur whenever the same sentences are
presented with different preceding contexts, and when we choose appropriately biased
cases which are distributionally similar. The pattern becomes distorted if we make one or
another bias especially strong, or change the directions of some of the biases. However,
the cases we have focused on here seem most closely analogous to the relevant cases that
psycholinguists have studied in natural language. Thus when given the constraint that the
gravitation mechanism needs to form a distinct attractor basin for every syntactically
distinct context, the model derives the competition mechanism hypothesized by McRae et
al. from the distributional properties of its training corpus.

Emergence of a Syntax/Semantics Distinction.The VSG model also induces a distinc-
tion between “syntactic” and “semantic” types of violations. Processing syntactically
well-formed strings (including semantically strange sentences) involves gravitation di-
rectly into an attractor whereas processing syntactic anomalies involves gravitation first
into a saddlepoint (a fixed point which attracts trajectories from one region of the state
space and repels them into another), and only later into an attractor. To illustrate this point,
we extend the analogy between natural language and the Thematic Bias Grammar. In the
training grammar, none of the five sequential categories is ever omitted and the elements
always follow one another in the same order. Thus skipping or repeating categories is
analogous to a natural language grammaticality violation.

Figure 7 shows two sample trajectories, one corresponding to a semantic violation and
one corresponding to a syntactic violation. The semantic violation is one of the cases
depicted in Figure 6. It occurs at the word “1d” in the sentence, “xc vc 1d 2d 3d p”
(analogous to “Cop arrested by detective left.”). The bias of the first two words toward X

Figure 6. Three trajectories in the “1” region. (See previous figure for explanation of labels.)
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continuations is contradicted by the bias of the third word toward Y continuations so the
processor slows down substantially at this word (13 time steps). Nevertheless, the string
is grammatical in the sense that its category sequence is sanctioned by the grammar.

The syntactic violation in Figure 7 occurs at the word ‘p’ in the string, “xb va 1a p”
(analogous to “Cop arrested the.”) This string is ungrammatical because it ends after the
third word, skipping the 2 and 3 categories. The VSG model’s response in this case is
substantially different from its response in the previous case. The starting point of the
trajectory (labeled “1a-p”) is remote from all of the clusters that are associated with
normal sentence processing. Moreover, the trajectory stretches for a long way across
empty space and gets pulled into what looks like an attractor midway between the “X 1”
region and the “X 2” region. After 30 time steps it still has not gravitated into one of the
clusters associated with normal processing. The apparent attractor is a saddlepoint. If
gravitation proceeds for a much longer time, the trajectory will eventually reach an
attractor. But it is clearly waylayed in a significant way compared to the trajectory of the
semantic violation.

To explore the hypothesis that semantic violations involve direct gravitation into an
attractor and syntactic violations involve delay by a saddlepoint, we studied the model’s
response to a sample of 20 semantic violations and 20 syntactic violations.

When the wrong category word was encountered, (a syntactic anomaly) the starting
point of the trajectory tended to be a compromise between the contextually appropriate
attractor and the attractor associated with the anomalous word. Thus syntactic anomalies
nearly always placed the processor far from any of the attractors. In every case the
trajectory was in the basin of the contextually appropriate attractor. In some cases, the
trajectory was drawn into a saddlepoint close to the contextually appropriate attractor. The

Figure 7. Trajectories for a semantic anomaly (labeled ‘vc-1d’ and a syntactic anomaly (labeled
‘1a-p’). The semantic anomaly occurs at the word ‘1d’ in the sentence ‘xc-vc-1d-2d-3d-p’. The syntactic
anomaly occurs at the word ‘p’ in the string ‘xb-va-1a-p’.

508 TABOR AND TANENHAUS



‘1a-p’ trajectory in Figure 7 is a case like this: the contextually appropriate attractor is the
‘X 2’ attractor (east of the label “2” in Figure 7). In other cases, the trajectory went quickly
into the contextually appropriate attractor despite the anomaly. An example is the word
‘ye’ after ‘yf’ in the sentence, “yf yevf 1f 2e 3f p”, which resulted in gravitation into the
‘Y V’ region in 3 timesteps. Often, then, the next word produced a trajectory that was still
trapped behind a saddlepoint at the 30th time step. Thus, the model sometimes showed
delayed sensitivity to an anomaly. We do not at this point know why the long reaction
times were sometimes coincident with the anomalous word and sometimes delayed by a word
or two, but we note that this behavior may be consistent with human behavior and bears further
looking into. We assessed the outcome of the trials by examining the trajectory for the
anomalous word and the word following it and tabulating results for whichever of these
trajectories was longer. Figure 8 plots the velocity profiles of these maximally anomalous
trajectories for the sets of syntactic and semantic anomalies. The velocity between two
successive pointsxW i andxW j on a trajectory is taken to be the distance betweenxW i andxW j

(since each step takes unit time). The difference between the mean maximal gravitation
times across the two classes of anomaly is significant (t(38) 5 7.97, p , .001).

Figure 8 suggests that the difference between grammatical and ungrammatical strings
is a graded qualitative difference. At one extreme are the parses with short, direct
trajectories into an attractor and thus short processing times. At the other extreme are
trajectories which land on what is called thestable manifoldof a saddlepoint. The stable
manifold contains those points which happen to be at the balance point between the
competing attractors and from which the system gravitates into the saddlepoint itself,
never reaching an attractor. These two kinds of behaviors are qualitatively distinct: in the
first case the processor arrives at a representation which is associated with an interpreta-
tion; in the second case it never arrives at such an interpretation. However, almost all real
examples are a mixture of these two types: even the clearest grammatical examples show
very slight influence of deflection by saddlepoints; even the worst grammatical anomalies
are unlikely to land on a stable manifold of a saddlepoint, and thus will eventually
gravitate into an attractor. Nonetheless, there is a clear clustering of strings into two
classes: grammatical and ungrammatical.

This framework provides a useful new conceptualization of the notion of grammati-
cality judgments. It also makes making several clear predictions that differentiate the VSG
model from models that make an absolute distinction between grammatical and ungram-
matical sentences and models (e.g., the SRN) that treat all contrasts as graded: 1) people
should show gradations of reading times on “grammatical” and “ungrammatical” sen-
tences even when they make clear binary grammaticality judgments, 2) lexical and other
contextual biasing can lead to a semantic anomaly behaving like a syntactic anomaly and
3) there should be variation in whether a syntactic violation leads to an immediate or
delayed increase in reading time.

IV. CONCLUSIONS

Drawing upon dynamical systems theory, the VSG model provides a useful set of
constructs for understanding the representational properties of high-dimensional learning
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models like Elman’s (SRN). In particular, the VSG model can be tuned so its attractor
basins identify clusters in the SRN’s representation space which correspond to states of
the generating process. Clustering seems to be an important step in mapping from the
continuous representations of learning models to the discrete representations of linguistic
models. The current results suggest that the VSG model provides an improvement over
hierarchical clustering methods of discretizing connectionist representations (e.g., Elman,

Figure 8. Velocity profiles for 20 semantically and 20 syntactically anomalous transitions. The profile
is pictured for either the word at which the anomaly occurred or the word following this word, whichever
had a longer gravitation time.
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1990; Pollack, 1990; Servan-Schreiber, Cleeremans, & McClelland, 1991), for these
provide no obvious way of picking out a linguistically or statistically relevant subset of a
cluster hierarchy.

More specifically, we extended the results of Tabor et al. (1997) by modeling reading
times for thematic effects on processing sentences with reduced relatives and we showed
how a competition mechanism which has been used to model ambiguity effects by
Michael Spivey and his colleagues arises as an emergent property of the model. We also
found that the processing of grammatical strings tended to involve gravitation directly into
an attractor, whereas the processing of ungrammatical strings usually led to gravitation
into a saddle point which greatly delayed arrival at an attractor. This result provides a way
of mapping the graded representation of an SRN (it rules out no string) onto the intuitively
observable contrast between semantic and syntactic violation.

Future Challenges for the VSG Model

First, the link between the SRN and the gravitation mechanism depends upon an external
constraint (the requirement that attractor basins line up with parse states) to set the
parameterp. If varying the parameterp over all possible values could produce arbitrary
attractor basin configurations, then the dynamical component would contributing little
insight. But the model is, in fact, fairly tightly constrained: experimentation suggests that
varying p leads to a relatively small range of basin configurations, with a simple case in
which there is only one basin (p 5 0) and a limiting case in which every point in the
visitation set has its own basin. Nonetheless, it would be desirable if the value ofp could
be determined independently of a grammatical oracle and we are currently investigating
this possibility.

Second, we have only analyzed VSG behavior on a simple formal language. While this
provides a necessary foundation for future work, it will be important to study more
realistic cases—e.g., one could incorporate a number of specific correlations between
subjects and verbs, like the fact that “cop” is a good subject for “arrest” and “employee”
is a good object for “hired” rather than a binary contrast between two biases (Good Agent
vs. Good Patient). To this end, it is also important to address the question of how to
represent phrase structural relationships as well as simple contrasts between states in a
finite-state language. Rodriguez, Wiles, & Elman (1999), Tabor (1998), and Wiles and
Elman (1995) provide some insight into this problem by looking at how SRNs and related
devices can represent context free grammars. A central question is, How should the
learning mechanism generalize from its finite training experience to an infinite-state
language?

Third, the faster processing of semantic violations compared to grammatical violations
in the current simulation is not surprising, given that the model is likely to have seen most
semantic violations in training. It will be important in future research to demonstrate that
the model exhibits generalization ability by removing a random sample of grammar-
generated strings from the training data and using these as test cases. However, real
semantic anomaly is not randomly distributed across grammatically legitimate combina-
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tions: it is associated with the juxtaposition of particular word classes. Thus, a more
interesting test requires using a grammar in which certain classes of words never directly
co-occur, although they have a strong higher-order correlation, to see whether the
gravitation mechanism will be able to appropriately group clusters of clusters into the
same attractor basin (e.g., “dogs” don’t “meow” or “purr” but they “eat”, “run”, “play”,
“sleep”, etc.—things that “meow”-ing and “purr”-ing individuals commonly do).

These challenges are nontrivial, but they arise from asking the challenging question
that motivates the VSG model: How can the relativistic perspective of a learning model
be mapped in a principled way to the more absolutist perspective which supports
categorical decisions? It is not obvious that there is any universally right way of taking this
step. However, simplicity is desirable and dynamical systems theory gives insight into
how rich structure can emerge from fairly simple assumptions. The dynamical perspective
thus provides a promising way for connectionist natural language modeling to handle
linguistic complexity without losing its useful relativism.

Acknowledgments: We thank Nick Chater, Morten Christiansen, Garrison Cottrell,
William Turkel, Michael Spivey-Knowlton and Gary Dell for helpful comments. We
would also like to give special thanks to Cornell Juliano whose involvement with the
predecessor of this paper helped to steer us in the direction of our recent results. W. Tabor
was supported by NIH Grant 5 T32 MH19389. M. K. Tanenhaus was supported by NIH
Grant HD 27206.

NOTES

1. Thus, the hidden-to-output weights were adjusted according to

Dwji } yidj 5 yi~tj 2 yj!

while the input-to-hidden and hidden-to-hidden weights were adjusted according to

Dwji } yidj 5 yi f9~netj! O
k

wkjdk

wherewji is the weight from uniti to unit j and f9(netj) 5 yj(1 2 yj) is the derivative of the sigmoid
activation function.

2. N must be large enough to make the cluster structure of the visitation set discernible;n controls the rate of
gravitation but does not affect relative rates of gravitation, so it can be scaled for implementational
convenience. Without loss of generality, then, we assumeDt 5 1.

3. We noted earlier that constraint-satisfaction models have been proposed as an alternative to “two-stage”
models of sentence processing (Frazier & Clifton, 1996). The VSG model also performs computations in
two distinct stages—the recurrent network computation, and the gravitation computation. But there are
important differences between the VSG model and traditional two-stage models. In the VSG model, there
is no early stage during which some information is systematically ignored. Rather, all information is present
from the beginning of each word’s settling process. Moreover, the second stage does not involve
deconstructing and rebuilding parse trees, but rather migration in a continuous space. Finally, systematic
biases in favor of one structure over another stem mainly from greater experience with the preferred
structure, not from an avoid-complexity strategy (see MacDonald & Christiansen, 1998).
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4. For this grammar, the minimum distance between grammar-determined distributions is 0.9410—this is, for
example, the distance between the distribution associated with the partial string “xa . . . ” and thedistri-
bution associated with the partial string, “ya . . . ”.

5. In the case at hand, the original hidden unit space had 10 dimensions. The first two principal components
captured 56 percent of the variance.

6. To make Figure 4 interpretable, we have circled and labeled the regions corresponding to distinct classes
based on our knowledge of which words correspond to which points.

7. The circles were drawn as follows: an estimation of the location of the attractor was computed by averaging
the second- and third-to-last positions of the trajectory for several trajectories and a circle of fixed radius
was drawn with this point as its center. Recall that the trajectory is considered at an end when it makes a
turn of more than 90 degrees on one step. This happens immediately after it has passed by the attractor.
Therefore the attractor is usually located somewhere between the second- and third-to-last positions, so their
average provides a reasonable estimate of its location. The circle radii have no explanatory significance—
they are just a method of identifying the attractor location without obscuring the view by putting a label
right on it.

8. The first step of each trajectory is marked by “1”; the second step brings the trajectory into the attractor and
is not shown in order to make the diagram easier to read.
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