Dynamical Assessment of Symbolic Processes with
Backprop Nets

Whitney Tabor

University of Connecticut
Department of Psychology
406 Babbidge Road Storrs, CT 06269 USA

tabor@Quconnvm.uconn.edu

In Proceedings of the
INNS-IEEE International Joint Conference on Artificial Neural Networks (LJCNN),
Washington, D.C., 2001.

Abstract

Simple Recurrent Networks (SRNs—[1]) were trained
to predict the outputs of various probabilistic symbolic
processes. Two of the symbolic processes made criti-
cal use of a push-down stack, and two were finite state
Markov processes. The memory-intensive (stack) pro-
cesses, in contrast to the Markov processes, pushed the
largest Lyapunov exponents toward zero, although they
never reached zero. The growth in the Lyapunov ex-
ponents was conditioned by the memory-intensiveness
of the task, not by the growth rate of the states. The
results indicate o link between the traditional use of
stack-memories to create complex computation and dy-
namical treatments of complezity based on trajectory
divergence.

1 Introduction

Backpropagation networks have been successfully used
for symbolic sequence learning in a number of domains
[2] [1] [3] [4] [5]. Some of these models have succeeded
in learning approximations to infinite state languages
([6] [7] [8] [9])- A different set of studies has provided
insight into what representations can be used to en-
code complex symbolic languages in artificial neural
networks (ANNs) when the weights are hardcoded [10]
[11] [12]. But there is a lack of understanding of how
learning drives (if it does) the formation of complex
representations, and indeed of the nature of the repre-
sentations that are learned when the task is complex. A

natural approach to answering this question is to seek
links between symbolic conceptions of complexity and
dynamical conceptions, which have received much at-
tention recently in nonlinear systems theory (e.g. [13]).
With this goal in mind, I describe several simulation
experiments in which neural networks were trained on
the outputs of symbolic processes and then analyzed
by measurement of Lyapunov exponents.

Lyapunov exponents ([14] [15] [16]) provide a measure
of the average rates of exponential growth and contrac-
tion of the space surrounding trajectories in a basin of
a dynamical system. [10] and [12] found methods of
hardwiring neural networks to process context free lan-
guages (CFLs) using fractal grammars. Fractal Gram-
mars for CFLs maintain a perfect balance between ex-
ponential contraction and growth in order to keep track
of arbitrary depths of embedding in a bounded metric
space. Thus one might expect a Lyapunov exponent of
0 in a neural network trained on a CFL.

This paper seeks 0-valued Lyapunov exponents in SRNs
trained on languages involving various kinds of struc-
ture. Since neural net symbol generators like the SRN
have a stochastic component, it is necessary to specify
how the standard definition of Lyapunov exponents can
be extended to the relevant kind of stochasticity. Here,
I am working in the domain laid out by [17], who has
established Lypanov exponents for stochastic systems.
But since, I do not fully understand Kifer’s arguments
for lack of familiarity with all the mathematical tech-
nology he employs, I outline a justification of a special
case which makes my proposal easier to understand.

Section 2 discusses Lyapunov exponents for SRNs. Sec-
tion 3 describes four simulation experiments examining
the relationship between symbolic stack memory and
state divergence. Section 4 concludes.

2 Lyapunov Exponents for SRNs

Lyapunov exponents measure the average rate of diver-
gence of trajectories near an attractor in a dynamical
system. Let

Top1 = f(T) (1)

be a discrete, deterministic dynamical system with n-
dimensional state, #. Following [14], define the Lya-
punov Exponents, A; for i = 1,...,n, of the trajectory
starting at Z as the logarithms of the eigenvalues of the
matrix

OSL(@) = lim (Df)"(Df)* (@) (2

where T' denotes transpose, D f (&) is the Jacobian of f
at Z, and

Dfy(Z) = D[fio fi10...0 f(Z)]
=Df(&) - Df(&y1)-...- Df(T) (3)

For Z in the basin of a single attractor, the values of the
eigenvalues are essentially independent of the choice of
Z so we may speak of the Lyapunov exponents of the
attractor. From another perspective, the ith eigenvalue
measures the average rate of growth of the ith princi-
ple axis of infinitismal ellipses surrounding points on
the attractor [18]. The sum of the Liapunov exponents
indicates the global stability of the system: the sum
must be negative for the system to have Lyapunov sta-
bility. If all the exponents are negative, then the system
is a limit cycle and visits only finitely many points. If
at least one exponent is positive (and the sum is neg-
ative), then the system is chaotic. The case in which
the greatest Lyapunov exponent is 0 in a discrete sys-
tem is a special case which can yield complex behavior
(famously for the logistic map at the “edge of chaos”—

[13]).

Here, I explore the use of Simple Recurrent Networks
(SRNs—{2] [1]), a class of neural networks that can

be trained to predict symbolic symbol sequences. The
SRNs I considered had the form

0; = normexp(Whp, - ﬁt) (4)
Ht = sigmoid(W,-h . Zt + Wy - }_7:,5_1) (5)

where sigmoid refers to the standard sigmoid function,
normexp refers to the normalized exponential (soft-
max) function, i refers to the input layer, h to the
hidden layer, & to the output layer, W; is the weight
matrix connecting layer a to layer b, and subscript ¢ is
a time index. The networks were trained using back-
propagation [19, 20] assuming a multinomial cost func-
tion (Ep = log Hjeoutputsoz-j , where t; is the target for
unit 7). The recurrent weights are trained using dis-
crete BPTT, but as in Elman’s studies, the gradient
was truncated after a single timestep (called BPTT(1)

by [21]).

The network’s outputs define a probability distribu-
tion. Thus, the network can function as an autonomous
stochastic dynamical system by sampling the output
distribution at time ¢ to pick an input for time ¢ + 1.

Let # be an initial point for the network and let S be
an infinite sequence of inputs to h generated under h
starting from Z. Consider the contingent value of the
Oseledec matrix given by

Def. OSL(Z,S) = limy_,oo (D f:)T(Df;))% (%) via the
processing of the recurrently generated input sequence

S.

This will be a useful definition if the eigenvalues of
OSL(Z,S) are reliably independent of the choice of Z
and of the randomness in the process that creates S.
For initial states, & and ¥, consider the case where the
trajectories issuing from Z (called ¢,) and from ¢ (called
ty) visit finitely many points ergodically. If these tra-
jectories coincide on one of the ergodic points, then
they have converged to the same probabilistic finite
state process and we say the distance between them is
zero in the limit. By the theory of Markov processes,
the transition probabilities into and out of each state
converge to stable values. Thus for each ergodic state,
s and history length k there will be a number M, such
that after M transitions have been made, the distribu-
tion of length k prehistories of s in ¢, will be arbitrarily
close to the distribution of length & prehistories of s in
t,. Consider an iterative QR decomposition of ¢, and
ty, each into an orthogonal matrix, @,, multiplied by
a series of upper triangular matrices, R ([22]):

ty = DfuDfm-1...Df1
=QuBRuRym-1-.-Ry (6)

and correspondingly for ¢,. The jth Liapunov Expo-
nent is given by

1 M
Ej=—% In|Ri(j,j)| (7)
i=1

Since the sequences of D fs have nearly identical dis-
tributions over length k prehistories of s in ¢, and ¢,
substantial differences in the R; ; at s can only be due
to events further away from s than k. But these have
negligible influence on average as k grows large. There-
fore, the sums converge to the same values in ¢, and
ty.

A similar argument can be made when the trajecto-
ries ergodically visit a countable infinity of states with
convergent probabilities. See [17] for a more general
treatment.

These arguments indicate that the definition of Lya-
punov exponents given above is robust in the sense that
if we can find basins of points which lead to the same
ergodic trajectory, then the Lyapunov exponents will
be associated with the entire basin. In particular, two
trajectories issuing from the same point will have the
same Lyaponov exponents.

Consider the context-free language defined by the rules
in Table 1.

[12] defines Dynamical Automata which recognize con-
text free languages by deploying states on a fractal. For
example DA 0, a dynamical automaton for recognizing
the language of Grammar 0 is specified by the Input
Map shown in Table 2. The essence of the DA is a two-
element vector, z, corresponding to a position on the
Sierpinski triangle ([23]). The DA functions as follows:
when z is in the subset of the plane specified in the
“Compartment” column, the possible inputs are those
shown in the “Input” column. Given a compartment
and a legal input for that compartment, the change in
z that results from reading the input is shown in the
“State Change” column. If we specify that the DA
must start with z = (1/2, 1/2), make state changes
according to the rules in Table 2 as symbols are read

Table 1: Grammar 0.

Rulela. | S—= ABCD
Rule1b. | S = €

Rule 2a. | A —» aS$S
Rule 2b. | A - a
Rule3a. | B—bS
Rule 3b. | B— b
Ruled4a. | C > ¢S

Rule4b. | C = ¢

Rule b5a.
Rule 5b.

D—dS
D—>d

from an input string, and return to z = (1/2, 1/2) (the
Final Region) when the last symbol is read, then the
computer functions as a recognizer for the language of
Grammar 0. To see this intuitively, note that any sub-
sequence of the form “ab ¢ d” invokes the identity map
on z. Thus DA 0 is equivalent to the nested finite-state
machine version of Grammar 0.

Table 2: Dynamical Automaton 0.

Compartment Input | State Change

21>1/2and 22<1/2 | b z <+ z-(1/2,0)

21 <1/2and 22 <1/2 z <+ z+ (0,1/2)

21 <1/2and 22> 1/2 z + 2(z-(0,1/2))

olalo

Any z <+ 1/2z 4 (1/2,0)

Using the definition above, we can derive the Lyapunov
exponents for an example like DA 0. If DA 0 starts at
Z = (0,0), then every trajectory produces a string with
an equal number of a’s, b’s, ¢’s, and d’s. The Jacobian
for the b and c transitions is I, the identity matrix.
For the a transitions, it is diag(1/2, 1/2) and for the
d transitions, it is diag(2, 2). Therefore, the Oseledec
matrix is I in the limit and both Lyapunov exponents
are 0.

The next section uses Lyapunov analysis to ask whether
backpropagation networks for CFLs are employing a
similar mechanism.

3 Finite-state vs. context free languages

I hypothesized the following for Simple Recurrent Net-
works (SRNs) trained using backpropagation:

Training on finite state languages will pro-
duce limit cycle dynamics, hence negative
Lyapunov exponents.

Training on context free languages will pro-
duce “edge of chaos” dynamics, hence max-
imum Lyapunov exponent 0.

I tested these hypotheses on four cases: (1) a deter-
ministic Markov language with only three states, (2) a
context free language with an exponential relationship
between state frequency and state frequency rank (3) a
context free language with a hyperbolic (Zipf’s Law) re-
lationship between state frequency and state frequency
rank, (4) a probabilistic Markov language with a Zipf’s
Law distribution (Table 3). By a “Markov language” I
mean a language in which the current state-transition
probabilities are a function of the most recently-read
symbol.

Each network had 4 hidden units and thus 16 corners
of the hidden unit hypercube. In general, backprop-
agation networks with sigmoidal hidden units tend to
drive their hidden unit representations to the corners
of this hypercube. Each network was trained to the
point where it had learned 16 or fewer states well (a
network was taken to have learned a state well if the
predicted transition probability distribution out of its
approximation to that state was closer to the correct
distribution than to any distinct target distribution).
Thus, each network had ample room to create spher-
ical state deployments and was not forced to induce
variation in contractivity by the structure of the repre-
sentation space.

A priori, one might expect the Zipf’s Law frequency-
rank relationship (of Languages 3 and 4) to spur fractal
organization of the network’s state space and thus lead
to dynamics with exponential separation of trajecto-
ries. Thus Language 4 (Zipf’s Law, Markov) serves as
a control to test whether state frequency distribution
or stack-memory-intensiveness has more influence on
the structure of the learned trajectories.

Lyapunov exponents were calculated using the House-
holder QR-based (HQRB) method described in [22].

Table 3: Symbol generating grammars. A constituent
in parentheses is generated in half the instances
and absent in the other half. Two constituents
with a slash (/) between split the instances half
and half as well.

| Grammar No. | Definition

| (1) |S—>abec
(2) S—S1p
S1 —+a(S1)b
3) S1 — S11/S12 p

S11 - a (S1) b
S12 - x (S1) y

(4 S — a P1/P2

P1 — (al P11)/(al P12)

P2 — (a2 P21)/(a2 P22)

P11 — (all P111)/(all P112)
P12 — (al2 P121)/(al12 P122)
P21 — (a21 P211)/(a21 P212)
P22 - (a22 P211)/(a22 P212)
P111 — alll allle

P112 — all2 all2e

P121 — al21 al2le

P122 — al22 al22e

P211 — a211 a21le

P212 — a212 a212e

P221 — a221 a22le

P222 — a222 a222e

Table 4: Lyapunov exponents for the grammar-trained
networks and an untrained network (“None”)
with weights randomly drawn from a uniform
distribution with mean 0 and radius 0. Mean
maximal exponent estimates and their standard
deviations are shown for 10 tests each from the
same initial point are shown.

| Grammar | Zipf’s? | Stack? | Max. Exp | S.D. |

1) No No 2113 0.001
(2) No Yes -0.156 0.008
(3) Yes Yes -0.235 0.003
() Yes No ~2.108 0.035
None — — -1.718 0.0004

3.1 Results

As shown in Table 3, maximal Lyapunov exponents
close to 0 seem to be uniquely associated with those
languages whose generation depends on a stack mem-
ory. Moreover, within those languages that were gen-
erated by stack memories, the maximal Lyapunov ex-
ponent increased in value over the course of training,
approaching 0 approximately, though the curves were
not very smooth.

4 Conclusions

There may be at least a partial correspondence be-
tween the Chomsky hierarchy of formal languages (fi-
nite state, context free, context sensitive, Turing lan-
guage) and the range of dynamical regimes identified by
nonlinear systems theory. Finite state languages may
correspond to limit cycles and context free languages
may correspond to edge-of-chaos phenomena with Lya-
punov exponents = (. The fact that a Turning machine
can be built with three stacks suggests that all recur-
sively enumerable computations may lie at the bound-
ary of chaos.

Although there seem to be parallels between symbolic
and dynamical characterizations of complexity, the re-
lationships between different languages are portrayed
differently within the two regimes. For example, within
the same Dyanmical Automaton, the context free lan-
guages may appear densely intermixed with the non-
context free languages and bear metric relations to
them ([12]).

The growth in Lyapunov exponents observed here dur-
ing the training of networks for processing stack-based
languages suggests a bifurcation route to the develop-
ment of complex memory. Mapping out this bifurcation
route may assist with some of the challenging prob-
lems facing the learning of structured data by neural
networks.

5 Acknowledgments

Thanks to Bruno Galantucci for helpful discussions.
Thanks to Chaopeng Zhou for help running the sim-
ulations.

References
[1] J. L. Elman, Machine Learning 7, 195 (1991).
[2] J. L. Elman, Cognitive Science 14, 179 (1990).

[3] D. Servan-Schreiber, A. Cleeremans, and J. L.
McClelland, Machine Learning 7, 161 (1991).

[4] J. B. Pollack, Machine Learning 7, 227 (1991).

[5] T. A. Plate, IEEE Transactions on Neural Net-
works 6, 623 (1995).

[6] M. C.Mozer and S. Das, A connectionist symbol
manipulator that discovers the structure of context-free
languages, in Advances in Neural Information Process-
ing Systems 5, edited by S. J. Hanson, J. D. Cowan,
and C. L. Giles, pages 863-70, Morgan Kaufmann, San
Mateo, CA, 1993.

[7] P. Rodriguez, J. Wiles, and J. Elman, Connec-
tion Science 11, 5 (1999).

[8] G.Z.Sun, H. H. Chen, C. L. Giles, Y. C. Lee, and
D. Chen, Connectionist pushdown automata that learn
context-free grammars, in Proceedings of the Interna-
tional Joint Conference on Neural Networks, edited by
M. Caudill, pages 577-580, Lawrence Earlbaum, Hills-
dale, NJ, 1990.

[9] S.Levy, O. Melnik, and J. Pollack, Infinite raam:
A principled conectionist basis for grammatical com-
petence, in Proceedings of the 22nd Annual Meeting of
the Cognitive Science Society, pages 298-303, Lawrence
Erlbaum Associates, Mahwah, NJ, 2000.

[10] C. Moore, Theoretical Computer Science 201, 99
(1998).

[11] M. Steijvers and P. Griinwald, A recurrent net-
work that performs a context-sensitive prediction task,
in Proceedings of the 18th Annual Cognitive Science
Conference, Lawrence Erlbaum Associates, 1996.

[12] W. Tabor, Expert Systems: The International
Journal of Knowledge Engineering and Neural Net-
works 17, 41 (2000).

[13] J.P. Crutchfield, Physica D 75, 11 (1994), In the
special issue on the Proceedings of the Oji International
Seminar, Complex Systems—from Complex Dynamics
to Artificial Reality.

[14] V. L Oseledec, Trudy Mosk. Mat. Obsc. 19, 197
(1968).

[15] J. Guckenheimer and P. Holmes, Nonlinear
Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields, Springer-Verlag, New York, 1983.

[16] H.D.I. Abarbanel, Analysis of Observed Chaotic
Data, Springer-Verlag, New York, 1996.

[17] Y. Kifer, Ergodic Theeory of Random Transfor-
mations, Birkhauser, Boston, 1986.

[18] A. Wolf, J. Swift, H. Swinney, and J. Vastano,
Physica D 16, 285 (1985).

[19] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, Learning internal represenations by error
propagation, in Parallel Distributed Processing, v. 1,
edited by D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, pages 318-362, MIT Press, 1986.

[20] D. Rumelhart, R. Durbin, R. Golden, and
Y. Chauvin, Backpropagation: The basic theory, in
Backpropagation: Theory, Architectures, and Applica-
tions, Lawrence Erlbaum Associates, 1995.

[21] R.J. Williams and J. Peng, Neural Computation
2, 490 (1990).

[22] H. F. von Bremen, F. E. Udwadia, and
W. Proskurowski, Physica D 101, 1 (1997).

[23] M. Barnsley, Fractals Everywhere, 2nd ed., Aca-
demic Press, Boston, [1988]1993.

