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1 Introduction

Dynamical systems theory provides effective formal models of structure in
natural languages. We describe a recurrent neural network called the Bram-
ble Network (BRN) and a related analytical tool, the Dynamical Automaton
(DA), which process words in sequence. The BRN makes one discrete jump
across its state space each time a word is processed, and then settles con-
tinuously to a stable state. Processing time is modeled as convergence time.
Two well-known phenomena in natural language processing are modeled: (i)
the inverse correlation between word frequency and response time and (ii)
the correlation between parsing difficulty and level of center embedding. The
model shows how constructs of dynamical systems theory provide a link be-
tween neural network models which are good at learning and show human-like
flexibility and abstract linguistic representations which are the current best
model of natural language syntactic structure and interpretation.

What role does dynamical systems theory have to play in turn-of-the-
millenium Cognitive Science? To answer this question, it is helpful to iden-
tify two major contrasting viewpoints that have come to prominence in the
past century. One viewpoint, identified with the work of J. B. Watson,
B.F. Skinner and other behaviorists, holds that all cognition can be derived
by studying experimentally-detected relationships between the inputs and
outputs of an organism and that speculation about unobservable “mental”
processes is fruitless. The other viewpoint, associated especially with N.
Chomsky, A. Newell, M. Minsky, J. Fodor and other cognitivists urges the
researcher to start with a theory of mental entities (e.g. memory, imagery,
grammar, etc.), and then test the predictions of that theory empirically. The
latter view has flourished recently. Since the 1950s there has been a vigor-
ous industry of investigating mental entities in psychology and linguistics.
Although behaviorism has fallen into disfavor since the debates, it has a
cousin in the form of connectionist or neural network models of cognition.
Connectionist learning models have the advantage that they can do a lot
with the simple “stimulus-response” rubric of behaviorism and are grounded
in an appropriately profound mathematics (contrast both behaviorism and
traditional artificial intelligence research). On the other hand, they inherit
one of behaviorism’s weaknesses: opacity. It is often easy to get a network
to behave in an appealing way, at least on simple tasks; it is much harder
to understand in a principled sense why it behaves that way and to get it to



learn more complex tasks.

Dynamical systems theory can help us understand the organizing prin-
ciples of connectionist networks by clarifying the relationship between two
perspectives on complex systems: the topological and the metric. The topo-
logical perspective groups many states of a system together into basins asso-
ciated with similar long-term behavior and thus sheds light on the system’s
large-scale, organizing properties. The metric perspective emphasizes the de-
tails of short-term behavior, thus relating large-scale structures to a timescale
that is suitable for modeling the daily lives of people and animals. Virtually
all connectionist networks are dynamical systems in the classical sense be-
cause their feedback mechanisms (the learning feedback loop in some cases,
the relaxation feedback loop in others, or both) give rise to attractor struc-
tures. The metric perspective dominated early connectionist research. The
topological perspective is now being more fully developed.

In fact, many of the fundamental constructs of dynamical systems theory
(basins, fixed points, stability) have been put forth as useful models of cogni-
tion (Chapter 2 of this volume; (van Gelder, 1998)). There are also a variety
of complex structures that arise in high-dimensional and/or chaotic dynam-
ical systems. The possibility that some of the latter structures will provide
insight into the useful but often vaguely specified mental entities identified
by cognitive psychologists and linguists makes the intersection of dynamics
and cognition particularly interesting to explore at present.

1.1 The role of recurrent connectionist networks

Recurrent connectionist networks and variants on them have been used in
a variety of cognitive domains: language (Elman, 1990; Elman, 1991; Plaut
et al., 1996; Rueckl, 1995; Tabor et al., 1997; Rodriguez et al., 1999; Tabor
and Tanenhaus, 1999); music (Large and Kolen, 1999; Page, 1999); robotics
(Schoner et al., 1995; Tani, 1998; Tani and Nolfi, 1999; Bergener et al., 1999).
The special property of dynamical recurrent networks, in the strict sense of
networks which settle in continuous time and connected space, is that they
make the dynamical structures more explicit than feedforward networks or
discrete-transition recurrent networks.

Elman (Elman, 1990; Elman, 1991) designed the Simple Recurrent Net-
work (SRN) for sequence prediction. The SRN is essentially a discrete 3-



layer feedforward network' (input — hidden — output), but it has recurrent
connections among the hidden units?>. Elman used the network to study
symbolic sequence prediction by adopting a localist representation of sym-
bols on the input layer and training the network on the task of predicting
the next symbol on the output layer, using a variant of Backpropagation
Through Time (BPTT—see (Williams and Peng, 1990; Pearlmutter, 1995),
Chapter ?? of this volume). The recurrent connections permit the SRN to
encode arbitrary temporal dependencies, thus opening the door to learning
infinite-state languages, like the context-free languages discussed in Section
2.2 below (see (Kremer, 1996)). Rodriguez, Wiles, and Elman (Rodriguez
et al., 1999) analyzed a version of the SRN trained on the language a™b" (n
=1, 2, 3, ....) and found that its computations took place on the transients
of fixed points of the dynamical system associated with the recurrent hidden
connections. In effect, the attractors provided the structure which organized
the recursive computation (see Tabor, in press). It has proved more diffi-
cult to get the SRN to learn more complex languages—it is challenged by
long-distance dependencies because of the diffusion of the error signal over
successive layers in the BPTT regime. But Servan-Schreiber, Cleeremans,
and McClelland (Servan-Schreiber et al., 1991), found that the network was
much helped by the inclusion in the training corpus of subtle probabilistic
biases that preserved state distinctions over the course of long dependencies.
Rohde and Plaut (Rohde and Plaut, 1999) noted that semantic biases in nat-
ural language induce such subtle probabilistic biases in training corpora and
they showed that the inclusion of these biases significantly improved SRN
learning on a natural language task involving multiple center-embeddings.
Thus SRNs can easily learn at least some classes of complex languages.
Plaut et al. (Plaut et al., 1996) studied a 3-layer attractor network for
individual word naming. In their network, the input units encode an ortho-
graphic representation of a word. The inputs feed forward to a hidden layer
which feeds forward to an output layer. The ouput units, which are supposed
to produce a phonemic representation of the word represented on the input
layer, are self-connected and also send feedback to the hidden units. The
unit activations evolve continuously over time and are trained using conti-

!By a discrete network or dynamical system we mean a model in which instantaneous
state changes are significantly noninfinitismal.
2The SRN is described in more detail in Section 2 below.



nous BPTT (Pearlmutter, 1989). Plaut et al. found that convergence time
provided an accurate model of naming time in their model. In particular,
their network exhibited the empirically established frequency x regularity in-
teraction for individual-word naming: being low instead of high in frequency
slows naming significantly for irregularly spelled words but does not make a
difference for regularly spelled words (Seidenberg and McClelland, 1989). In
our investigation of the Bramble Network (BRN) described below, we make
the same analogy between network convergence time and human process-
ing time. Plaut et al.’s model uses a slot-filler representation for sequences
of symbols on the input layer. Natural language syntax, which seems best
modeled by context-free and other infinite-state computational mechanisms,
is not expressible in a slot-filler notation. Thus, while Plaut et al.’s model has
the advantage of providing an explicit model of processing time, it lacks the
SRN’s capacity for modeling the temporal dependencies that arise in syntax.
The BRN, described below, combines continuous settling with an SRN to
obtain the advantages of both systems.

Tabor et al. (Tabor et al., 1997) and Tabor and Tanenhaus (Tabor and
Tanenhaus, 1999) describe another extension of the SRN which makes the
dynamics of word-by-word language processing explicit. Their model, called
the Visitation Set Gravitation (VSG) model, combines an SRN with a dy-
namical system based on physical gravitation. The SRN’s internal states are
treated as inducing a mass density function, where more frequently visited
regions are associated with greater concentrations of mass. A generalized
form of the Law of Universal Gravitation models the movement of the sys-
tem in the mass distribution. The system forms attractors corresponding to
structures that arise in parsing and makes empirically supported predictions
about the effects of word frequency and other sentence processing phenomena
(Tabor and Tanenhaus, 1999). However, it is a complex hybrid model and
thus requires some special tuning which can be avoided in a more uniform
model. The BRN, described below, is a more uniform model which makes
similar predictions to the VSG model and systematizes the relationship be-
tween dynamical structures and learning.

Large and Kolen (Large and Kolen, 1999) study a model of musical
rhythm perception based on coupled oscillators. Their oscillators can be
thought of as connectionist units with sinusoidal resting functions. Each
oscillator has its period and phase set at particular values initially. In the
presence of a rhythmic stimulus, the value of a coupling term is adjusted in
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order to increase the alignment between the energy distribution of the stim-
ulus and the energy distribution of the oscillator. Large and Kolen suggest
that stability analyses, in the form of regime diagrams, provide the kind of
insight into the structure of their system that well-formedness rules provide
in more traditional metrical theories of rhythm. They identify the general
case of interest in which the oscillators, like neurons, interact not just with
the stimulus, but with each other, and then focus on the simple case in which
such interoscillator-communication is not included. Their model succeeds in
identifying fundamental periodicities in one complex musical passage. The
most obvious analogy between music and natural language syntax is the one
which treats melodic phrases as analogues of linguistic phrases, but the use
of attractors to model components of a rhythm suggests an intriguing new
way of thinking about phrasing in general: syntax might be a system of
oscillators, where each word produced or encountered causes the system to
calibrate an oscillator corresponding to the grammatical interpretation of the
word.

Tani (Tani, 1998) studied a seeing robot that learned to navigate a cyclic
course connecting five landmarks. At the core of the robot is a discrete
recurrent network employing context re-entry (Jordan and Rumelhart, 1992).
Input units encode the current scene and feed forward to hidden units. The
hidden units, in turn, feed forward to output units which encode a prediction
of the expected next scene. The hidden units also predict an output context
which serves as input to the hidden units on the next timestep. The network
alternates between two modes: an open-loop mode, in which it attempts to
predict successive scenes while traveling in a room, and a closed-loop mode,
in which it uses its outputs to update its inputs on the next timestep (and
does not interact with the external world). Tani found that the system
alternated somewhat spontaneously between chaotic and nonchaotic regimes.
The nonchaotic regime often took the form of a five-period limit cycle whose
states corresponded to the five landmarks on the robot’s path. When a sixth
landmark was added to the environment, the robot went into an especially
long chaotic phase before developing a suitable period-six limit cycle. The
results suggest that the chaos plays an important role in modification of
system structure.

One important difference exists between the way a neural network solves
a task and the way a symbolic computer solves it. A network fits its training
cases with a connected manifold and generalizes by interpolation/extrapolation
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on this manifold, while a symbolic computer defines categories that cover
novel cases, but makes no assumption of representational continuity. In the
above studies, the effect of taking a dynamical perspective has often been
to enhance understanding of the in-between-the-datapoints structure of the
network manifold, thus clarifying what is new about the network perspective.

1.2 The Role of Sentence Processing Studies

At present, only a few forays have been made into the domain of modeling
complex natural language syntactic structure with self-organizing mecha-
nisms like neural networks (Pollack, 1990; Elman, 1990; Elman, 1991; El-
man, 1995; Port and van Gelder, 1995; Burgess and Lund, 1997; Landauer
and Dumais, 1997; Tabor et al., 1997; Tabor and Tanenhaus, 1999; Rohde
and Plaut, 1999). In several of these cases, a network is trained to make ac-
curate predictions about a linguistic domain, the internal representations are
analyzed, and the resulting cluster-structure bears a tantalizing resemblance
to some of the abstractions that linguists have proposed as rudimentary con-
structs in language. For example, Elman (Elman, 1990) trained a network to
predict successive words in small English-like corpus (“dog eat food . window
break . girl see boy . girl break window . boy sleep . ...”). A hierarchical
cluster analysis of the network’s hidden units showed clusters corresponding
to Noun, Verb, Transitive Verb, Intransitive Verb, Animate, Inanimate, etc.
But in most such cases, the mapping to linguistic theory was rather vague,
and there was a lack of theoretical completeness to the analysis. For example,
What is the appropriate way to define clusters? Why do the clusters line up
with linguistic-like categories?

The study of real-time language processing provides a more quantifiable
angle on the nature of linguistic representation. This field was inspired by the
global coherence that Generative Linguistic Theory brought to the study of
natural language syntax in the 1960s. A variety of laboratory-based methods
have been developed which allow researchers to make statistically robust
claims about how people produce and comprehend language. The methods
include measuring reaction times to linguistic stimuli—in particular, word-
by-word reading times, tracking eye-movements in reading and visual scenes,
measuring people’s statistical biases in making choices between alternative
syntactic structures when speaking or writing, and correlating various brain-
imaging techniques with the presentation of linguistic stimuli. The goal of



all of these studies is to model human behavior as accurately as possible in
order to gain insight into how the brain manages to interpret and produce
language at the rapid rate that it does. In the work we describe below, we
strive for a similar goal, focusing on the results of particular reading-time
studies.

A number of connectionist networks have been successfully used to model
sentence processing data—e.g., (Cottrell and Small, 1984; Selman and Hirst,
1985; McClelland and Kawamoto, 1986; Kempen and Vosse, 1989; Elman,
1990; Elman, 1991; Christiansen and Chater, 1994; Juliano and Tanenhaus,
1994; Christiansen and Chater, 1999; Vosse and Kempen, 1999). Many of
these implicitly dynamical models have generally produced compelling quan-
titative fits to data but have been hard to understand and thus hard to make
analytic predictions from.

1.3 Overview

Here, we show how the explicit introduction of dynamics and dynamical
constructs into neural networks for symbol prediction provides explanation
for two central sentence processing phenomena: Frequency sensitivity and
Phrase-structure.

Frequency sensitivity refers to the way processing time measures are cor-
related with frequencies of abstract linguistic types. For example, the word
“cinnamon” is an abstract entity which occurs some number of times in each
sample of speech data that we may consider. It is well established that in-
dividual word reading times (both in isolation and in sentence context) are
significantly correlated with the average rate of use of the words in natu-
ral speech (Inhoff and Rayner, 1986; Rayner and Duffy, 1986). Frequency
effects are thus a benchmark phenomenon which a model of sentence pro-
cessing should be able to predict.

Phrase structure and memory. One insight of modern linguistic theory
has been that phrasal units (e.g. Noun Phrase, Verb Phrase, Adjective
Phrase, Prepositional Phrase) are important organizing devices. Thus, sym-
bolic methods of encoding natural language typically make use of context-
free grammars (CFGs), which define languages as recursive concatenations
of phrasal units. Neural network models that learn languages are taxed by
the problem of learning context free languages (CFLs) because it is hard
for them to detect long-distance temporal dependencies. Thus, simulation
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studies of language processing, including the work on phenomena related to
frequency of words which we describe below, have largely side-stepped the
challenge of modeling phrasal organization (there are many interesting phe-
nomena in language processing that can be studied using samples of language
with only short temporal dependencies). In the larger picture, however, this
bias creates an unfortunate lacuna because phrase representation is a pow-
erful tool for encoding the large number of combinatorial possibilities that
natural languages allow.

A distinct line of work has focused on the computational capacity of ar-
tificial neural networks, showing ways of implementing various infinite-state
devices (like CFGs) in neural hardware (Siegelmann and Sontag, 1991; Kre-
mer, 1996; Siegelmann, 1996). One species of this work (Barnsley, 1993;
Moore, 1998; Tabor, 1998; Tabor, 2000) provides insight into what abstract
phrasal structures look like in metric representation spaces by showing how
they can arise via the interaction of attractors in a dynamical system. We
descibe an application of this work to the modeling of sentence processing
phenomena to demonstrate its empirical plausibility and to strengthen, for
this critical case, the claim that dynamical systems theory identifies appro-
priate abstractions for handling complex cognitive phenomena.

2 Case studies: Dynamical networks for sen-
tence processing

For the first study, we used the dynamical recurrent network shown in Fig-
ure 1. This network, called the Bramble Network (BRN), is based on the
Simple Recurrent Network (SRN) architecture first investigated by Elman
(Elman, 1990; Elman, 1991). We studied its performance on the same task
that Elman investigated: next-word-prediction. In Elman’s network, words
are assigned localist encodings on an input layer. There are feedforward con-
nections from input to hidden units and from hidden to output units, and
there are also recurrent connections among the hidden units. These recurrent
connections are implemented by treating the previous timestep of the hidden
layer as an extra row of input units. These extra input units, called Context
Units receive a copy of the previous hidden activations each time a new input
is presented. Hidden units and output units are then updated according to



the discrete map,

a; = op(nety,) (1)
nety, = Y Wi;a; (2)
J

where a; is the activation of unit ¢, op(x) is the logistic activation function,
1/(1+ e "), and w;; is the weight from unit j to unit .

The BRN has two parallel sets of recurrent connections among its hidden
units. The first set, called the discrete weights, are equivalent to the weights
from the context units to the hidden layer in Elman’s network. The second
set, called the continuous weights, are used for settling in connected space as
specified in Equation 3.

dvi
dt
Here, net; = b; + X wijoc(v;), oc(x) = tanh(z) , and tanh(v;) = 2 x a; — 1.
Because it is designed for performing a one-in-n prediction task, the BRN
we used here has normalized exponential (or softmax) output units (o; =

netai

= net; — v; (3)

€

o
Outputs

are updated first. Then the input-to-hidden weights and the discrete hidden-
to-hidden weights are used to compute an initial new state of the hidden
units. Continuous settling is carried out (depending on what was being
modeled, it was carried out to convergence, or for a prespecified amount of
time) via the continuous weights among the hidden units. Finally, the hidden-
to-output weights map the final state of the hidden units to the output.

The network is trained using backpropagation (Rumelhart et al., 1986;
Rumelhart et al., 1995) assuming a multinomial cost function (Ep = log HOutputsy;i).
The discrete weights are trained using discrete BPTT, but as in Elman’s stud-
ies, the gradient was truncated after a single timestep (called BPTT(1) by
(Williams and Peng, 1990); see also Chapter ?? of this volume).

While the discrete training accomplishes accuracy mazimization, the con-
tinuous weights are updated according to a principle of stability maximiza-
tion. That is, for continuous weights, we define the error on unit i as

Eei = (‘;—t) (4)

9

). In the BRN, the input and previous-time-step hidden units




girl dog tree ... ran  talked barked

Output O . . . Q
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Hidden O O
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girl dog  tree ... ran talked barked

Figure 1: The Bramble Network (BRN).
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so that

dE¢;
dw,- 5

= 20¢(vj)(net; — v;). (5)

Equation (5) says, in effect, change the weights in the direction that mini-
mizes the magnitude of recent activation change. Continuous weight learning
is applied only when the network is close to a stable state (though crucially,
not at it). It thus moves the stable state in the direction of the initial state,
causing bifurcations when widely separated initial states are associated with
a single attractor. The overall effect is that the attractors of the continuous
weights tend to track the centers of masses of clusters defined by the discrete
weights (Tabor et al., 1997). It is crucial to include the continuous space
biases, b;, and to tune these biases along with the other weights. Otherwise,
the symmetry of the logistic function prevents effective tracking of cluster
means.

We trained the network on the task of predicting the next word in a sim-
ple artificial language. Although it would be impossible for any mechanism
to predict each successive word precisely without knowledge of the specific
random character of the underlying process, if the process had some syntac-
tic structure, the network would be able to pick up on that structure and
constrain its guesses. In fact, in keeping with much recent work interpreting
neural networks as statistical analyzers, prediction networks like the SRN
and the BRN tend to distribute activation over the output units in propor-
tion to the symbol emission probabilities associated with the current state of
processing (Elman, 1990; Servan-Schreiber et al., 1991; Casey, 1996).> The
details of the training procedures are described in the next section.

2.1 Case 1: Frequency Sensitivity

Sentence-structure seems to involve state-machine sequencing. There is much
to recommend the view that the human language processor is best approx-
imated by an infinite state device—e.g., (Chomsky, 1956)—we take up this
issue under Case 2 below. But even within finite-state subdomains of natu-
ral language, there is a question of how categories can be learned and how

3We intend state in the sense of Crutchfield (Crutchfield, 1994): two instances in time
belong to the same state if their expected futures are identical.
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within-category variation can be efficiently handled.

One aspect of within-category variation is the inverse correlation between
the frequency of a word and the amount of time it takes a language user to
respond to it. This correlation has been demonstrated many times in isolated
word reading studies. It also applies when words are read in a sentence
context, where it is independent of the confound of word length (Inhoff and
Rayner, 1986; Rayner and Duffy, 1986).

The aim in this study was to see if the Bramble Net would (i) learn the
syntactic structure of a sentence generator from a sequence of examples of
its grammatical sentences, (ii) develop a topology which would map, in a
systematic way, onto the abstract structure of the generating process (Casey,
1996), and (iii) exhibit a correlation between frequency and processing time
like that found in people.

To carefully study the BRN’s response to frequency contrasts, we exam-
ined a grammar with a very simple phrasal organization: every sentence had
the form (1).

(1) Noun Verb p

The Noun class contained 26 different words, the verb class contained 10
different words. Counting “p” (which stands for “period”) there were 37
distinct words in lexicon of the language. Each of these words corresponded
to a unique unit on the input layer of the BRN, whose activation value was
clamped to 1 whenever its word was presented to the network.

The probability distributions characterizing transitions from the Nouns
to the Verbs were designed to approximate the range of distributions seen in
natural languages. A few Nouns were very high in frequency and tended to
be followed by a small subset of verbs (these correspond to human-referring
nouns in natural language corpora). A larger subset of the Nouns had some-
what lower frequency and tended to be used with the same set of verbs
predominantly, but with a number of special verb preferences in individual
cases (these correspond, approximately, to the many entities which we speak
of anthropomorphically—animals, machines, companies, etc.). Finally, an
even larger subset of Nouns had very low individual frequencies and tended
to select verbs in a quite distinct way from the prototypical nouns (these cor-
respond to words for inanimate entities that do not have much in common
with people). In other words, the distributions are distributed approximately
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spherically around a prototype, with noun frequency declining with distance
from the prototype—we made them hyperbolically declining, following the
evidence of Zipf (Zipf, 1943). A set of distributions with these characteristics
was generated formulaically.

The verbs, on the other hand, only made a transition to one element (“p”),
so they were all associated with a single next-word distribution. Because
of the structure of the Noun-to-Verb transitions, the prior probabilities of
Verbs, like the prior probabilities of Nouns, were distributed approximately
hyperbolically.

Sentences were generated randomly as just described, and strung together
end-to-end for presentation to a network (Elman, 1990). Thus, “p” also had
a (unique) next-word distribution.

The prototypical network in this study had 37 input units, 10 hidden
units, and 37 output units. The learning rate was 0.002 for both continuous
and discrete weights. Momentum was set to 0.9 for the discrete weights and
0.0 for the continuous weights. The network had to process some sentences
rapidly, with no time to settle between successive words, and some sentences
more slowly, with 50 cycles of processing (At = 0.05) between successive
words. The mixture of fast and slow was random in the ratio 7:3. The psy-
chological motivation for this training scenario is that people hear speech
at different rates on different occasions and they have to be able to handle
the variation. The modeling motivation is that the rapid presentation makes
successive words closer together in the network’s memory and thus helps it
learn longer dependencies; the slower presentation allows it to develop attrac-
tor structures which reveal some of the category structure of the generating
process.

Eight networks differing only their random initial weight settings were
trained. Each network was trained on the randomly generated

output of the grammar until the average Kulback-Leibler divergence error
(E = 3, tilogt;/o;, where t; is the target for unit 7 and o; is its activation)
per word during training was less than 0.05. The target distributions were
computed from the training grammar. The 0.05 level was achieved for each
network by the time 500,000 word presentations had been made. The net-
work was tested under fast presentation (no settling) and slow presentation
(400 cycles of settling, which closely approximated convergence for almost
every word). With fast processing, the average divergence error was 0.0163
(s.d. = 0.0036 across the means for the eight networks). With slow process-
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ing, the average divergence error was 0.1633 (s.d. = 0.1527). These numbers
can be helpfully compared to the minimum divergence distances between
target distributions under the generating grammar. The divergence distance
between two probability distributions p; and py was is twice the divergence
between p; and (p;+p2)/2. If the nouns, verbs, and periods were treated as
three clusters, respectively, then the minimum divergence distance between
clusters (computed as the minimum divergence distance between points in
the clusters) was 1.3863. If all words were treated individually, then the min-
imum divergence distance between distinct distributions was 0.0116. With
this comparison removed, the minimum distance was 0.0345. Thus, it can
be said that except for a few cases, fast processing was distingushing the
lexical states, and slow processing was distinguishing what may be called the
grammatical states, corresponding to the classes, Noun, Verb, and “p”.

Even though fast processing produces more accurate word-prediction,
slow processing is of interest as a model of human behavior in sentence pro-
cessing. The convergence times provide an explicit model of reading times.

Rayner and Duffy (Rayner and Duffy, 1986) found that when people
read sentences containing high and low frequency nouns, they read the high
frequency nouns faster. We performed an analogous experiment on the net-
works.

After the networks were trained, we used the grammar to generate 600
words in sequence for each network. With the networks running in slow
mode, we collected convergence times for each word. We determined when
the network “arrived” at an attractor by asking when the distance between
successive hidden unit states in the discrete approximation to continuity
dropped below 0.005. This number was chosen so that the words in the
corpus showed a significant range of convergence times. We also used the
grammar to compute frequencies of the individual words. For the set of all
600 words in the corpus, the correlation between frequency and convergence
time was significantly negative in all but one case (With the outlier—p =
.19—removed, mean R? = 0.37; s.d. = 0.27; max p < .0001). For the set all
the Nouns in each corpus, the correlation was significantly negative in every
case (mean R? = 0.64; s.d. = 0.21; max p < .0001).

Why does this frequency correlation obtain? Figure 2 shows a reduced-
dimension plot of a sample of 600 trajectories associated with grammatical
processing. The plot was generated by performing Principal Component
Analysis (Jolliffe, 1986) on the set of all the points in the 600 trajectories

14



and plotting the projections of the trajectories on the subspace formed by the
first two components. Each trajectory starts at the unmarked end of a curve
and ends at a circle. The figure suggests that the network has formed three
distinct manifolds (or, possibly, three separated segments of a single mani-
fold) which attract the system’s state. Each manifold (segment) corresponds
to a grammatical class (Noun, Verb, or p). This classification was determined
by checking the lexical labels of all the points in the sample. Consider the
trajectories associated with the Nouns. The initial points of the trajectories
have a geometry which approximates the geometry of the transition proba-
bility distributions in the output space: approximately spherical, with the
highest frequency nouns in the center and the lower frequency nouns further
out. The initial points have this structure because the accuracy training of
the discrete weights creates a topography which maps, in a linearly separa-
ble fashion, onto the output distributions. Moreover, the attractive manifold
of fixed points lies in the center of the sphere, relatively close to the ini-
tial points of the highest-frequency nouns. The manifold is located near the
high-frequency cases because the stability training pulls it most strongly in
the direction of the highest-frequency nouns.

One may ask why there are three manifold segments rather than many.
After all, each individual noun has a distinct future in the underlying pro-
cess, and those distinctions are encoded in the initial states. Why should the
stable states not divide into many disconnected manifolds to reflect those dif-
ferences? It is possible that, with sufficiently long training, they will, but we
have not seen it yet. We tried one run up to 4 million pattern presentations.
The manifold structure still looked stable in a PCA representation, although
the Noun section had stretched considerably relative to the Verb and “p”
manifolds. A relationship between the degree of asymmetry in an initial state
distribution and the representational power of the continuous weights must
determine which subsets of points get mapped to connected manifolds and
which get mapped to separate manifolds. Characterizing this relationship
may be analogous to answering the question, What are the abstract gram-
matical categories that organize the structure of a language? One appealing
feature of the current model is that it provides a formal framework for ad-
dressing this question. Hypothesized abstract grammatical classes have been
very helpful in the development of linguistic understanding—they are among
the most successful “mental entities” in cognitive psychology. But their def-
initions depend on a set of grammatical “diagnostics” whose membership is
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Figure 2: Reduced-dimension plot of the manifolds associated with distinct
lexical classes.
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controversial, and not completely specified. A formal, learning-based defini-
tion of categories would strengthen the field considerably.

The current study may leave one wondering what point there is in having
the discrete recurrent connections in the BRN. After all, the dependencies
of the “Noun Verb p” grammar could be learned by a feedforward network.
In other experiments, we have studied the performance of the BRN and the
related VSG model on tasks involving context-dependent interpretation of
words (Tabor and Tanenhaus, 1999; Tabor and Hutchins, 2000). One dis-
covery of such studies is that difficulty on one word often carries over to
difficulty on succeeding words (see also Case 2 below). This phenomenon is
an instance of representational inertia, the persistence over time of mental
representations in the face of contradictory evidence. The phenomenon has
been observed empirically in many reading studies (Rayner and Duffy, 1986;
Rayner, 1998). In fact, the current BRN exhibits a tendency toward rep-
resentational inertia as well, even though there is never any need to carry
information forward more than one word at a time. One of the eight net-
works tends, in slow processing, to mistake Verbs for Nouns, resulting in high
processing times on the Verbs. If representational inertia is involved here,
then the high reading times should persist into the next state, independently
of that state’s prior tendencies. Indeed, the correlation between convergence
time on “p” (the word that always follows Verb) and convergence time on
the word preceding “p” (always Verb) was highly significant for this network
(R? = 0.89, p < .0001).

2.2 Case 2: Phrase-structure

Although the results of the previous section are encouraging, merely han-
dling frequency sensitivity is not a convincing demonstraton that dynamical
recurrent networks are up to the job of characterizing the rich structure that
seems to exist in human languages. Phrase structure, on the other hand, is
a powerful organizing mechanism which greatly simplifies the description of
natural language syntax (Chomsky, 1957). Here, we describe a class of dy-
namical computers, called Dynamical Automata (DAs) (Tabor, 1998; Tabor,
2000), which can recognize and generate phrase structure languages, as well
as many other complex languages.

In the general case, phrase structure requires an unbounded stack. But
people’s ability to store syntactic stack states seems to taper off around 3
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or 4 levels of embedding (e.g., (Miller and Chomsky, 1963; Christiansen and
Chater, 1999)). What mechanism can capture both the simplicity fact and
the tapering capacity fact? A pushdown automaton with a limit on the length
of its stack does a reasonable job of approximating the data (Marcus, 1980),
but the assumption of a hard cutoff is dubious because of the variation with
context of a single person’s ability to process center embedded structures
(Schlesinger, 1968). It would be nice to motivate the limit on memory, too.
DAs do simple stack-computation under ideal conditions but suffer human-
like forgetting in a world with noise. Thus, DAs provide a plausible method
of encoding stacks in a distributed, neuron-like representation. (See also
Chapter 5 of this volume).

We will give an example of a DA for a simple context free grammar,
summarize a theorem about formal equivalence to context free grammars,
and then show how a DA model of natural language predicts memory load
effects.

2.2.1 An example Dynamical Automaton

Under one definition, a fractal is a set of points which is self-similar at ar-
bitrarily small scales (see also Chapter ?? of this volume). Figure 3 shows
a diagram of the fractal called the Sierpinski Triangle (the letter labels in
the diagram will be explained presently). The Sierpinski triangle, a kind of
Cantor set, is the limit of the process of successively removing the “middle
quarter” of a triangle to produce three new triangles.

The grammar shown in Table 1 is a context free grammar which includes
some center-embedded structures and thus cannot be emulated by a finite
state machine. A pushdown automaton for the language of Grammar 2
would need to keep track of each “abcd” string that has been started but not
completed. For this purpose it could store a symbol corresponding to the last
letter of any partially completed string on a pushdown stack. For example,
if it stored the symbol “A” whenever an embedding occurred under “a”, “B”
for an embedding under “b” and “C” for an embedding under “c”, the stack
states would be members of {A, B, C}*. We can use the Sierpinski Triangle
to keep track of the stack states for Grammar 2. Consider the labeled triangle
in Figure 3(a). Note that all the labels are at the midpoints of hypotenuses of
subtriangles (e.g., the label “CB” corresponds to the point, (0.125, 0.625)).
The labeling scheme is organized so that each member of {A, B, C}* is the
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label of some midpoint (only stacks of cardinality 3 are shown).

Rulela. | S—=ABCD
Rule 1b. | S — €

Rule2a. | A — a S
Rule 2b. | A — a

Rule3a. | B—Db S
Rule 3b. | B— b

Ruleda. | C = ¢S
Rule 4b. | C = ¢

Rule ba. | D —+d S
Rule 5b. | D — d

Table 1: Grammar 2. (Implemented in Dynamical Automaton 1).

We define a DA (called DA 1) that recognizes the language of Grammar 2
by the Input Map shown in Table 2. The essence of the DA is a two-element
vector, z, corresponding to a position on the Sierpinski triangle. The DA
functions as follows: when z is in the subset of the plane specified in the
“Compartment” column, the possible inputs are those shown in the “Input”
column. Given a compartment and a legal input for that compartment,
the change in z that results from reading the input is shown in the “State
Change” column. If we specify that the DA must start with z = (1/2, 1/2),
make state changes according to the rules in Table 2 as symbols are read
from an input string, and return to z = (1/2, 1/2) (the Final Region) when
the last symbol is read, then the computer functions as a recognizer for the
language of Grammar 2. To see this intuitively, note that any subsequence
of the form “a b ¢ d” invokes the identity map on z. Thus DA 1 is equivalent
to the nested finite-state machine version of Grammar 2. For illustration,
the trajectory corresponding to the string “a bcaabcdbcdd’ is
shown in Figure 3(b) ( 1.a is the position after the first symbol, an “a”, has
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been processed; 2.b is the position after the second symbol, a “b” has been
processed, etc.)

Region Input | State Change
z1>1/2and 22<1/2 | b z <+ z-(1/2,0)

21 <1/2 and 22 < 1/2 z <+ z+ (0,1/2)

21 <1/2 and 22 > 1/2 z<+ 2(z-(0,1/2))
Any z+1/2z+ (1/2,0)

S e N

Table 2: Dynamical Automaton 1.

The computations of this Dynamical Automaton bear a close resem-
blance to the empirically observed computations of Simple Recurrent Net-
works (SRNs). Rodriguez, et al., (Rodriguez et al., 1999) found that SRNs
trained on the language a™b" performed their computations on a geometric
series fractal. Elman (Elman, 1991) examined the many-dimensional hidden
unit space of an SRN trained on more elaborate recursive languages and
found that different lexical classes corresponded to different subregions of
the space. Likewise, in the example above, the three lexical classes, A, B,
and C correspond to three distinct regions of the representation space (each
class has only one member). The item “d” does not need a class of its own
because its occurrence always puts the computer into a state corresponding
to one of the other three classes. Elman also noted that the SRN followed
similarly-shaped trajectories from region to region whenever it was process-
ing a phrase of a particular type, with slight displacements differentiating
successive levels of embedding. Here, the single phrase S is also associated
with a characteristic (triangular) trajectory wherever it occurs and slight
displacements also differentiate successive levels of embedding.

2.2.2 Formal relationships between dynamical automata and sym-
bolic computers

One can construct a wide variety of computing devices that organize their
computations around fractals. At the heart of each fractal computer is a set
of iterating functions that have associated stable states and which can be an-
alyzed using tools of dynamical systems theory (Barnsley, 1993). One species

21



of Dynamical Automata, called Pushdown Dynamical Automata (PDDAs)
is a class of generator/recognizers for CFLs. DA 1 above is an example of a
PDDA. Tabor (Tabor, 2000) formalizes the equivalence. An appealing con-
sequence of the analysis is that various familiar symbolic computing devices
(e.g. context free grammars, context-sensitive grammars, queue-based gram-
mars. etc. see (Moore, 1998)) can be identified in metric spaces where they
bear distance relationships to other computing devices. The (geo)metric per-
spective on these relationships may be useful in the problem of navigating
among models via learning (Tabor, 1998; Tabor, 2000).

2.2.3 Simulation of memory load: Multiply center-embedded con-
structions.

Several researchers (e.g., (Miller and Chomsky, 1963; Bach et al., 1986; Chris-
tiansen and Chater, 1999)) have emphasized that exact computation of ar-
bitrary center-embedding structures is not very human-like. In fact, people
seem usually to be able to comprehend at most three layers of clausal struc-
ture and their comprehension of three-layer structures (e.g., “The squirrel
the dog Jane owned chased escaped.”) is intermittent. The Dynamical Au-
tomata described in the previous section perform perfectly at all levels of
embedding, and thus are not particularly human-like as such. However, it
is natural to assume that some noise distorts the computation of activation
values. With fixed-variance Gaussian noise added to each activation value
and a tolerance of one-standard-deviation permitted for the final state, the
performance of the network described above degrades in a realistic way with
growth in the number of center-embeddings (Figure 4). This account is ap-
pealing in comparison to proposals to explicitly limit the storage capacity
of a symbolic parser (Lewis, 1996; Gibson, 1998) because it links processing
failure to a plausible property of neurons. Casey (Casey, 1996) notes that a
recurrent network with bounded state space and measurable indeterminacy
in its states cannot recognize an infinite-state language. The current perspec-
tive emphasizes the importance of not treating Casey’s point as an argument
for studying only finite-state models of cognition: the exact computation
provides a useful characterization of the organizing system underlying the
noisy computation. The distinction between noisy and exact is thus similar
to Chomsky’s (Chomsky, 1957) distinction between performance and com-
petence.
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2.2.4 Subject versus object relative clauses.

King and Just (King and Just, 1991) and Gibson and Ko (Gibson and Ko,
1999) measured reading times phrase by phrase in subject-extracted relative
clauses (“subject relatives”) like (2a) and object-extracted relative clauses
(“object relatives”) like (2b).

(2a) The girl who met the boy liked fish.
(2b) The girl who the boy met liked fish.

They found that the highest mean reading times were higher in object-
relatives than in subject relatives.

Gibson (Gibson, 1998) proposes a model of these and many other reading
time phenomena based on the notion that the sentence processor incurs a
load when it has to integrate temporally separated events. For example, it
is costly to integrate the word “met” with the word “who” (its grammatical
object) in (1b) because it is separated from “who” by the phrase “the boy”.
Furthermore, it is more costly to integrate “met” with “who” in (1b) than
it is in (la) because “met” is further away from “who” in (1b) than (1a).
Gibson’s model gives a close fit to the reading time profiles across words in
the sentence (Figure 5(a)), although it puts the maximal integration costs at
the same value in both sentences, contra the findings of King and Just.

The noisy Dynamical Automaton model assumes that a small amount
of Gaussian noise (variance = 0.02 units in the metric space of the frac-
tal) distorts the representation every time a new word is read. The system
recovers from the noise by moving back (along a straight line in its represen-
tation space) toward the point it is supposed to be at until it comes within
a particular small radius of that point (tolerance radius = 0.02). Predicted
reading time is proportional to the distance the system moves to get within
tolerance. This mechanism takes its inspiration from dynamical models of
parsing like that of Case 1 above (see also (Tabor et al., 1997; McRae et al.,
1998)) in which the parser, upon processing each word, falls into a basin of
attraction corresponding to the (presumed) correct parse. Actual dynamical
implementation of the correction mechanism is a focus of current research.

The Input Map for the Dynamical Automaton we used to model transitive
sentences with relative clause modifiers is shown in Table 3. The automaton
uses 9 partition states and moves around on a 3-dimensional fractal. Table 4
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gives the compartment definitions. The automaton works as follows. Each
transition from word to word within a phrase involves moving between regions
of the fractal representing different parse states. If some constituent must be
remembered, a vector symbol is “pushed” onto the neural stack in a similar
manner to the way the symbols A, B, and C were pushed onto the stack in
the previous example. The symbol is later removed from the stack when the
continuation of its constituent is encountered.*

Figures 6(a) and 6(b) compare the predictions of the Dynamical Au-
tomaton model to the results of Gibson and Ko (Gibson and Ko, 1999). The
model’s time predictions (proportional to the distance it travels to get within
tolerance) are scaled by an affine transformation to match the human data
in mean and range across all data points. The profile fit is, as with Gib-
son’s model, quite a close one. The model predicts high reading times at
the points where information that has been pushed onto the stack is being
recovered. The reason for the high reading times at these points is that the
fixed-variance noise has a stronger effect on information that is encoded at
a smaller scale. For example, the information about the subject (“girl”) has
been scaled by a factor of 1/2 during the processing of the phrase “who met
boy” in the Subject Relative case.

The model predicts the observed contrast between the maximal reading
times of Subject and Object Relatives. Although Gibson and Ko don’t re-
port on the significance of this contrast in their data, King and Just found
very similar profiles and observed a significant difference between the reading
times at the second verb in the two cases—“likes” in the example (F(1, 32)
= 23.99, p < .001). The Dynamical Automaton model predicts this contrast
because of its assumption that recovery can be only partial (within the toler-
ance of 0.02 units in hidden unit space). Thus, difficulty with integration at
“met” can carry over to the next word. In Subject Relatives (1b), this repre-
sentational inertia has no prominent effect on reading times because “met” is
relatively easy to process and the next word (“boy”) is also easy to process.

“Consistent with psycholinguistic work on filled-gap effects (Stowe et al., 1991), the
model aggressively posits traces whenever a licensing verb comes along (i.e., it does not
wait until the next word provides evidence that a missing constituent has been passed).
This assumption has the consequence that integration of the arguments of a verb (e.g.,
“who”, “the boy”) occurs when the verb (“met”) is read. On the other hand, consistent
with the tendency toward Late Closure (e.g., (Frazier and Rayner, 1982)) constituent
closure is not performed until the following word provides evidence for closure.
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Compartment | Input | Transition Symbolic Meaning
Start N z+— 1/2z+(1/2,0,1/2) push NSubjl
Comp Vv z<+—z-(1/2,0,0) switch(V, Comp)
N z<+ 1/2z+ (1/2,1/2,1/2) push NSubj2
Vv N z<+z+ (-1/2,0,1/2) switch(V, NObj)
NSubj1 Comp |z + 1/27 + (0, 1/2, 0) push Comp2
Vv z<+z+(0,0,1/2) switch(NSubj, V)
NSubj2 Comp |z« 1/2z push Comp2
Vv z <+ 2(z-(1/2,1/2,1/2)) + (0, 0, 1/2) | pop NSubj2 then
switch(Comp, Nobj)
NObj1 Comp |z <z + (0,0, -1/2) switch(NObj, Comp)
Vv z < 2[2(z- (0,0,1/2)) - pop NObj1 then pop
(1/2,1/2,1/2)] + (0, 0, 1/2) NSubj2 then
switch(Comp, NOb})
End |z+2(z-(0,0,1/2)) pop NObj1
NObj2 Comp |z + z- (0,0, 1/2) switch(NObj, Comp)
Vv z<+2(z-(0,1/2,1/2)) - (0,0, 1/2) pop NObj2 then

switch(NSubj, V)

Note: switch(X, Y) means switch from control state X to control state Y.

Table 3: Dynamical Automaton 2: transitions.
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Name | Definition

Start (1/2,1/2,1/2)

Compl | (0, 0, 0) + opencube
Comp2 | (0, 1/2, 0) + opencube

V1 (1/2, 0, 0) + opencube

V2 (1/2,1/2,0) + opencube
NObj1 | (0, 0, 1/2) + opencube
NObj2 | (0, 1/2, 1/2) + opencube
NSubjl | (1/2, 0, 1/2) + opencube
NSubj2 | (1/2, 1/2 1/2) + opencube

Note: opencube is the set {(z,y,2) : 0 <z <1/2,0<y<1/2,0< 2 <

1/2}.
Note: Compartment A as labelled in Table 3 is the union of the compartments
Al and A2 shown above for A € {Comp,V, NObj, NSubj}.

Table 4: Dynamical Automaton 2: compartment definitions.

But in Object Relatives (1a) “met” is especially hard to process and this
difficulty carries over onto the word “likes”, which is hard in the first place.
Gibson’s account does not make this prediction because the load imposed
by integration does not interact dynamically with the processor: the load is
computed at a word and has its entire effect at that word, so difficulty on
one word cannot carry over to a following one.

3 Conclusions

We have described several models of human sentence processing which use
the constructs of dynamical systems theory. The models use a mixture of
discrete and continuous state change. They compute an initial response to
each successive word discretely, and then undergo a continuous adjustment
process which clarifies the syntactic classification of the word. Dynamical
constructs help in several ways. The dynamics provide an explicit model of
the time course of processing, something which can be easily and objectively
measured. The models’ metric properties account for observed fine-grained
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differences between similar items: metric contrasts underlie the frequency
effects in Case 1 and the inertia effects in Cases 1 and 2. The models’
topological properties provide insight into the structural principles which
organize their computations. Topological contrasts define the lexical class
manifolds in Case 1 and the fractal organization of phrasal embedding in
Case 2.

Where does one go from here? This work suggests that a fundamental
challenge for cognitive science is to properly characterize the relationship
between the metric and topological organization of systems. The current
studies achieve this integration partially, but not wholly. For example, the
Bramble Network is good at learning, handles noise well, and induces struc-
tures that resemble rudimentary structural features of natural languages.
But it struggles to learn structures of the complexity that Dynamical Au-
tomata can handle. On the other hand, although Dynamical Automata can
perform computations of arbitrary complexity (Moore, 1998), we do not yet
know how their weights can be learned from data, and their operation in
noise needs to be more fully defined and explored. Thus it is desirable to
better integrate the Bramble Net and Dynamical Automaton perspectives.

In sum, dynamical recurrent networks provide new insight because of the
link they make between metric and topological properties of complex systems.
The topological structures of dynamical recurrent networks may provide a
basis for formal models of the mental entities which cognitivist theories of
mind propose. Their metric properties provide a suitable environment for
learning, and allow the networks to make testable quantitative predictions.
Thus, the link may strengthen the mathematical and empirical grounding
of the cognitive sciences, and may, conversely, help reductionist approaches
to complex systems (e.g., physics, chemistry, neurobiology) identify useful
systems-level generalizations.
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